首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We report two male cousins with Duchenne muscular dystrophy (DMD) in whom cytogenetic studies have shown a small interstitial deletion at Xp21. The lesion is readily detectable in patients and carriers by flow cytometry which indicates that approximately 6000 kb of DNA are deleted in each case. The DNA markers OTC, C7, and B24 are present in the deleted X chromosome but 87-8, 87-1, and 754 are absent. Despite apparently identical deletions one affected boy has profound mental handicap while the other is only mildly retarded. The results confirm the assignment of familial DMD to Xp21 and illustrate the value of flow cytometry in improving the precision of chromosome analysis. We have also undertaken flow cytometry in a cell line from a previously reported DMD patient with a de novo Xp21 deletion who had, in addition, chronic granulomatous disease, retinitis pigmentosa, and the McLeod syndrome. The results indicate that the amount of DNA deleted from the X is similar in both families despite the striking differences in phenotype.  相似文献   

2.
Summary Twenty-nine deletion breakpoints were mapped in 220 kb of the DXS164 locus relative to potential exons of the Duchenne and Becker muscular dystrophy gene. Four deletion junction fragments were isolated to acquire outlying Xp21 loci on both the terminal and centromere side of the DXS164 locus. The junction loci were used for chromosome walking, searches for DNA polymorphisms, and mapping against deletion and translocation breakpoints. Forty-four unrelated deletions were analyzed using the junction loci as hybridization probes to map the endpoints between cloned Xp21 loci. DNA polymorphisms from the DXS164 and junction loci were used to follow the segregation of a mutation in a family that represents a recombinant. Both the physical and genetic data point to a very large size for this X-linked muscular dystrophy locus.  相似文献   

3.
We are reporting a male patient who suffered from chronic granulomatous disease associated with cytochrome b−245 deficiency and McLeod red cell phenotype, Duchenne muscular dystrophy, and retinitis pigmentosa. On cytogenetic analysis, he seemed to have a very subtle interstitial deletion of part of band Xp21. Since it was impossible to know whether this material was truly deleted or inserted elsewhere in the genome, somatic cell and molecular studies were carried out. In somatic cell hybrids, the deleted X chromosome was isolated on a Chinese hamster background. Southern blot analysis with 20 single-copy probes, that had been mapped to the X short arm, led to the discovery of one (probe 754) that is missing from this patient's X chromosome and also from his total DNA. This proves that he, indeed, has a deletion rather than a balanced insertion. The results provide cytological mapping information for the X-linked phenotypes present in this patient. Furthermore, probe 754 recognizes a restriction fragment length polymorphism of high frequency that makes it the most powerful probe currently available for linkage studies with X-linked muscular dystrophy.  相似文献   

4.
Duchenne muscular dystrophy.   总被引:2,自引:0,他引:2  
Progress in understanding the role of dystrophin raises promising hopes for a treatment for Duchenne muscular dystrophy. In addition, great improvements have been made in the ability to diagnose this disease using simple molecular methods.  相似文献   

5.
Molecular deletion patterns in Duchenne and Becker type muscular dystrophy   总被引:3,自引:2,他引:3  
Summary DNA from 80 Duchenne (DMD) and 15 Becker (BMD) index patients was analyzed with 12 genomic probes and the total cDNA. Deletions were detected in 24 DMD (30%) and 10 BMD patients (67%) by genomic probes alone, mostly p20, pXJ, and/or pERT87. All deletions were confirmed by cDNA probes, and an additional 29 DMD deletions were detected, resulting in a total of 63/95 deletions (66%). The majority of the deletions are localized between kb 6.7 and 9.7 of the cDNA; a smaller group, between kb 0.5 and 3.5. Of the deletions, 90% are detected by the three cDNA probes 1–2a, 7, and 8. This can be applied to strategies for carrier detection and prenatal diagnosis. The order of 13 exon-containing HindIII fragments in the region between probes 7 and 9–10, where most of the deletions are found, could be defined. The deletion patterns in DMD and BMD patients are different and well in accordance with the “reading frame theory” of Monaco and coworkers. Thus our findings indicate that a DMD or BMD phenotype may be predicted according to the breakpoint position and the number of deleted exons.  相似文献   

6.
Using pulsed-field gel electrophoresis and 12 Xp21-derived DNA probes, we have constructed a continuous restriction map spanning more than 4 million base pairs (4 Mbp), including the Duchenne muscular dystrophy gene of more than 2 Mbp. This detailed map is part of a less detailed map spanning 10 Mbp, also spanning the genes for glycerol kinase and congenital adrenal hypoplasia, constructed under electrophoresis conditions which separated DNA fragments in the range 200 to 4000 kbp. DNA from three different tissues was analyzed, and differential methylation was observed.  相似文献   

7.
Over 20 females have been reported to carry reciprocal X; autosome translocations with breakpoints in Xp21 and to suffer from Duchenne muscular dystrophy (DMD). We have positioned nine of these breakpoints with respect to the Duchenne gene by mapping probes from the DMD region against a panel of somatic cell hybrids, each containing one of the translocation chromosomes from a different female patient; further information has also been obtained by in situ hybridization, including the breakpoint location in a tenth DMD patient. We have also characterized two translocation breakpoints that lie in the same chromosomal region but which are not associated with the expression of DMD. All the DMD-associated translocation breakpoints examined lie at several sites within the DMD locus and between the two non-DMD breakpoints.  相似文献   

8.
9.
Summary We have identified a Duchenne muscular dystrophy (DMD) pedigree with an unexpected pattern of inheritance. Using marker restriction fragment length polymorphisms detected by probes that lie within and outside the DMD gene, we could demonstrate that the maternal grandfather has transmitted two distinct types of X chromosomes to his offspring. This original observation may be explained by postulating that the DMD mutation must have occurred during mitosis in early germline proliferation, leading to a germline mosaicism within this male ancestor.  相似文献   

10.
A deletion hot spot in the Duchenne muscular dystrophy gene   总被引:28,自引:0,他引:28  
We have made a detailed study of a deletion hot spot in the distal half of the Duchenne muscular dystrophy (DMD) gene, using intragenic probe P20 (DXS269), isolated by a hybrid cell-mediated cloning procedure. P20 detects 16% deletions in patients suffering from either DMD or Becker muscular dystrophy (BMD), in sharp contrast to the adjacent intragenic markers JBir (7%) and J66 (less than 1%), mapping respectively 200-320 kb proximal and 380-500 kb distal to P20. Of the P20 deletions, 30% start within a region of 25-40 kb, the majority extending distally. P20 was confirmed to map internal to a distal intron of the DMD gene. This region was recently shown by both cDNA analysis (M. Koenig et al., 1987; Cell 50: 509-517), and field inversion electrophoresis studies (J.T. Den Dunnen et al., 1987, Nature (London) 329: 640-642) to be specifically prone to deletions. In addition, P20 detects MspI and EcoRV RFLPs, informative in 48% of the carrier females. Together, these properties make P20 useful for carrier detection, prenatal diagnosis, and the study of deletion induction in both DMD and BMD.  相似文献   

11.
Partial gene deletion is the major type of mutation leading to Duchenne muscular dystrophy (DMD) and its mild allelic form, Becker muscular dystrophy (BMD). Amplification of the genomic DNAs of 152 unrelated dystrophin patients using multiple primers detected 78 (51.3%) probands with deletion mutations. We predicted the translational reading frame for all the deletions in Egyptian dystrophin males. The frameshift rule was confirmed positively ranging for 50 to 67% of the cases depending on the type of disease. We discuss ways of accounting for some exceptions from the frameshift hypothesis in the central and proximal regions. These explanations may help in developing procedures for reducing the severity of dystrophin phenotypes to restore the correct frame by disrupting the translational fidelity. Great efforts have been put into the development of effective 'gene correction' procedures via such intrinsic mechanisms. In addition, we mapped regional difference in deletion mutation frequencies within the DMD gene locus between the different Egyptian governorates. There were no double deletions in the Egyptian dystrophin males.  相似文献   

12.
Summary We report a unique case of a 46-year-old female who had signs of Duchenne-like muscular dystrophy on clinical, electromyographic, and laboratory investigation. A brother, sister, maternal uncle, and her own son also had Duchenne type muscular dystrophy. Karyotype analysis in the proband showed both the X chromosomes to be morphologically normal. We discuss different hypothetical mechanisms to account for the family pedigree.  相似文献   

13.
An isolated case of Duchenne muscular dystrophy in a female who has a de novo t(X;5)(p21;q35) translocation is described. The similarities between this patient and four previously reported females with Duchenne muscular dystrophy are discussed. It is concluded that the locus for Duchenne muscular dystrophy is at Xp21 and, furthermore, that this site may be particularly susceptible both to chromosome breakage and exchange and to gene mutation.  相似文献   

14.
A somatic cell hybrid has been constructed and characterized using fibroblasts from a phenotypically normal woman who possesses an X chromosome with an interstitial deletion of the short arm. High-resolution banding indicates that the deleted segment is either Xp22.13-p11.4 or Xp22.11-p11.23. Southern blot hybridization to previously mapped DNA sequences confirms that the missing segment of the X chromosome is a deletion and not an interstitial translocation and supports the cytogenetic interpretation that the deletion extends proximal of Xp11.3 and therefore probably comprises Xp22.11-p11.23. Three further DNA sequences have been localized to the region of the deleted segment. The following order has been assigned to the seven probes used: Xpter-RC8-pXUT22-(OA1,C7,M2C)-L1.28-RD6 -Xcen.  相似文献   

15.
Summary A DNA marker C7, localised Xp21.1-Xp21.3, has been studied in kindreds segregating for Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD). In DMD families four crossovers were observed in 38 informative meioses between C7 and the DMD locus (=0.12, z max=+2.72). In BMD families no recombinants were observed in the 16 informative meioses studied. These data are consistent with the localisation of the mutations in these disorders being in the same region of Xp21.Studies in families also segregating for the DNA marker 754 support the previously reported physical order of these loci as X centromere-754-DMD-BMD-C7-X telomere. A recombination fraction of 0.11 (z max=+5.58) was found between DMD-754 by combining our previously published data with the data presented here. C7 and 754 thus provide good bridging markers for the diagnosis of DMD and BMD.  相似文献   

16.
Summary The single X chromosome of a girl with Turner syndrome 45,X and typical Duchenne muscular dystrophy was investigated at the chromosomal and DNA levels. No visible abnormality of the residual X chromosome was found upon high-resolution R-banding. The DNA was analysed by Southern blotting and hybridization with seven cloned probes mapping in the Xp21 region where the Duchenne locus is thought to be located. A molecular deletion was detected with probes pERT 87.1, pERT 87.8, and pERT 87.15. The other probes (754, C7, 99.6, and RC8) gave a normal signal. The DNA alleles seen in the two parents indicated that the deletion found in the propositus had occurred de novo on a maternal X chromosome.  相似文献   

17.
Aland Island Eye Disease (AIED) is an X-linked form of ocular hypopigmentation--also known as Forsius-Eriksson, or type 2, ocular albinism--in which affected males demonstrate subnormal visual acuity, protanomalous red-green colorblindness, axial myopia, astigmatism, hypoplasia of the fovea, and hypopigmentation of the fundus. A patient has previously been described who, in addition to AIED, manifested a contiguous gene syndrome which included congenital adrenal hypoplasia (AHC), glycerol kinase deficiency (GKD), and Duchenne muscular dystrophy (DMD). In the present paper report we report the molecular genetic analysis of his deletion. Initially, multiplex polymerase-chain-reaction amplification was used to screen for a DMD-locus deletion which was then further characterized, using DMD cDNA and genomic probes, via Southern blot analysis. The deletion includes the region encompassed by probes C7 (DXS28) and DMD cDNA 8. Probes B24 (DXS67) and DMD cDNA 5b-7 show normal hybridization patterns and appear to flank the deletion, while the DMD cDNA 8 detects a junction fragment. Molecular genetic techniques have mapped the deletion in this patient to the subbands Xp21.3-21.2, between DXS67 and DMD.  相似文献   

18.
19.
Deletion is a common cause of Duchenne muscular dystrophy (DMD). Field-inversion gel electrophoresis, in conjunction with Southern blot hybridization, was used to detect large SfiI DNA fragments in the DMD locus. Two unrelated boys with DMD were found to have abnormal sized DNA fragments resulting from deletions. Some of the female relatives of these patients were also shown by this method to have deletions in the DMD locus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号