首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
3.
Progressive shifts of holding potential (Vh) in crayfish giant axons, from -140 to -70 mV, reduce gating currents seen in depolarizing steps (to 0 mV test potential) while proportionately increasing gating currents in hyperpolarizing steps (to -240 mV). The resulting sigmoid equilibrium charge distribution (Q-Vh curve) shows an effective valence of 1.9e and a midpoint of -100 mV. By contrast, Q-V curves obtained using hyperpolarizing and/or depolarizing steps from a single holding potential, change their "shape" depending on the chosen holding potential. For holding potentials at the negative end of the Q-Vh distribution (e.g., -140 mV), negligible charge moves in hyperpolarizing pulses and the Q-V curve can be characterized entirely from depolarizing voltage steps. The slope of the resulting simple sigmoid Q-V curve also indicates an effective valence of 1.9e. When the axon is held at less negative potentials significant charge moves in hyperpolarizing voltage steps. The component of the Q-V curve collected using hyperpolarizing pulses shows a significantly reduced slope (approximately 0.75e) by comparison with the 1.9e slope found using depolarizing pulses or from the Q-Vh curve. As holding potential is shifted in the depolarizing direction along the Q-Vh curve, an increasing fraction of total charge movement must be assessed in hyperpolarizing voltage steps. Thus charge moving in the low slope component of the Q-V curve increases as holding potential is depolarized, while charge moving with high apparent valence decreases proportionately. Additional results, together with simulations based on a simple kinetic model, suggest that the reduced apparent valence of the low slope component of the Q-V curve results from gating charge immobilization occurring at holding potential. Immobilization selectively retards that fraction of total charge moving in hyperpolarizing pulses. Misleading conclusions, as to the number and valence of the gating particles, may therefore be derived from Q-V curves obtained by other than depolarizing pulses from negative saturated holding potentials.  相似文献   

4.
Block of sodium conductance by n-octanol in crayfish giant axons   总被引:2,自引:0,他引:2  
The block of the Na+ current by n-octanol was studied in crayfish giant axons under axial wire voltage-clamp conditions. Standard kinetic analysis of the Na+ currents was undertaken to test the hypothesis tha the n-octanol-induced block of the Na+ current could be accounted for on the basis of changes in the voltage dependence of the kinetic parameters. Alterations in the membrane dipolar potential arising from rearrangement of membrane lipids would be the anticipated source of changes in the voltage dependence. Although some changes in voltage dependence did evolve with the block by n-octanol, the changes were not of sufficient magnitude to account for the block. In conclusion, although higher concentrations of n-octanol produced shifts along the voltage axis of the kinetic parameters, direct blocking action of n-octanol on the channel appears to be the most important mechanism of the block.  相似文献   

5.
Effects of changes in initial conditions on the magnitude and kinetics of gating current and sodium current were studied in voltage-clamped, internally-perfused, crayfish giant axons. We examined the effects of changes in holding potential, inactivating prepulses, and recovery from inactivation in axons with intact fast inactivation. We also studied the effects of brief interpulse intervals in axons pretreated with chloramine-T for removal of fast inactivation. We find marked effects of gating current kinetics induced by both prepulse inactivation and brief interpulse intervals. The apparent changes in gating current relaxation rates cannot be explained simply by changes in gating charge magnitude (charge immobilization) combined with "Cole-Moore-type" time shifts. Rather they appear to indicate selective suppression of kinetically-identifiable components within the control gating currents. Our results provide additional support for a model involving parallel, nonidentical, gating particles.  相似文献   

6.
The steady state potassium conductance as a function of measured membrane potential difference (p.d.) ? of the squid giant axon is corrected for the effect of accumulation of potassium in the periaxonal space. This correction is made on the assumption that several mathematical models of the axon are valid. These are (i) the McIlroy (1975), McIlroy-Hahn (1978) model of membrane conductanceg i(i=K, Na) which is a detailed model of passive transport of ions across the axonal membrane with the aid of mobile, negatively-charged carriers, (ii) the Adelmanet al. (1973) compartmental model of the periaxonal and external bathing-solution spaces, (iii) the enzymatic theory of nervous conduction due to McIlroy (1970 a, b, c), (iv) the Wien dissociative effect of the axolemmic electric field on the weak membrane buffer proposed by Bass and Moore (1968) as a trigger mechanism in nervous excitation and (v) the model (McIlroy, 1979) of the interfacial double-layer p.d.s. which are assumed to exist at the membrane’s surfaces because of the presence of a fixed surface charge. From the correctedg k (?) curves the values of the double-layer p.d.s. of model (v) are deduced and these are shown to lead to a consistent, physically reasonable solution for the distance (approx. 6.8Å) between the fixed surface charges and for the dissociation constants of these sites in their interactions with the ions of the extra-membrane electrolytes. Assuming that the selectivity coefficint of the potassium conducting system for the squid giant axon is approx. 52 it is deduced that the potassium permeability,P ks , of the periaxonal barrier ≈1.37(±0.5)×10?4 cm sec?1 and the thickness of the periaxonal space ≈451±159Å.  相似文献   

7.
Summary The distal stumps of severed medial giant axons (MGAs) and of non-giant axons (NGAs) in the CNS of the crayfish Procambarus clarkii show long-term (5–9 months) survival associated with disorientation of mitochondria and thickening of the glial sheath. However, the morphological responses of the two axonal types differ in that neither the proximal nor the distal stump of severed MGAs ever fills with mitochondria as is observed in some severed NGAs. Furthermore, the adaxonal glial layer never completely encircles portions of MGA axoplasm as occurs in many severed NGAs; in fact, ultrastructural changes in the adaxonal layer around severed MGAs are often difficult to detect. No multiple axonal profiles are ever seen within the glial sheath of the proximal or distal stumps of severed MGAs whereas these structures are easily located within severed NGAs.This work was supported by NIH research grant #NS-14412 and an RCDA#00070 to GDB  相似文献   

8.
The giant axons of annelids   总被引:2,自引:0,他引:2  
  相似文献   

9.
Summary The membrane of crayfish medial giant axons is permeable at rest to ions in the rank K>Na>Ca>Cl. With K present, variation of the other ions has little or no effect, but with K absent the axon hyperpolarizes when Na is reduced or eliminated by replacement with Tris (slope ca. 30 mV/decade Na0). The hyperpolarization is independent of the presence of Cl or its absence (substitution with methanesulfonate or isethionate). The resistance increases progressively as Na is removed. These changes persist after the spike is blocked with tetrodotoxin. An increase in Ca causes depolarization (slope ca. 20 mV/decade) provided K, Na and Cl are all absent, but in the presence of Cl there is little or no change in membrane potential on increasing Ca to 150mm. The depolarization induced by Ca is associated with an increased resistance. Spike electrogenesis involves Ca activation as well as Na activation, but the after-depolarization at the end of the spike is due to a conductance increase for Ca. Two alternative equivalent circuits for the resting and active membrane are discussed.  相似文献   

10.
Sodium channel activations, measured as the fraction of channels open to peak conductance for different test potentials (F[V]), shows two statistically different slopes from holding potential more positive than -90 mV. A high valence of 4-6e is indicated a test potentials within 35 mV of the apparent threshold potential (circa -65 mV at -85 mV holding potential). However, for test potentials positive to -30 mV, the F(V) curve shows a 2e valence. The F(V) curve for crayfish axon sodium channels at these "depolarized" holding potentials thus closely resembles classic data obtained from other preparations at holding potentials between -80 and -60 mV. In contrast, at holding potentials more negative than -100 mV, the high slope essentially disappears and the F(V) curve follows a single Boltzmann distribution with a valence of approximately 2e at all potentials. Neither the slope of this simple distribution nor its midpoint (-20 mV) was significantly affected by removal of fast inactivation with pronase. The change in F(V) slope, when holding potential is increased from -85 to -120 mV, does not appear to be caused by the contribution of a second channel type. The simple voltage dependence of sodium current found at Vh -120 mV be used by to discriminate between models of sodium channel activation, and rules out models with three particles of equal valence.  相似文献   

11.
Recent experimental evidence from a number of preparations indicates that sodium channel inactivation may be intrinsically voltage sensitive. Intrinsically voltage sensitive inactivation should produce a charge movement. Crayfish giant axons provide a unique opportunity to reexamine the slower components of gating currents (Ig) for a contribution from inactivation (Igh). In reference to other axon preparations, this preparation has relatively rapid inactivation, and steady-state inactivation has a comparatively steep voltage dependence. As predicted by a two-state scheme for voltage-sensitive sodium channel inactivation, Ig in crayfish axons includes a slow component with time constant comparable to the time constant of decay of the sodium current. Allowing for some delay in its onset (60 microseconds), inactivation as described by this slow component of Ig carries roughly the amount of charge predicted by the voltage dependence of inactivation.  相似文献   

12.
The cationic dye methylene blue (MB+) blocks INa in a voltage and time-dependent manner and exhibits no frequency dependent block at 1 Hz when internally perfused in normal or pronase-treated crayfish axons. Peak INa decreases with increasing MB+ concentrations in the range 50 microM to 5 mM, but the blocking time constant approaches an asymptote at concentrations above 500 microM. IgON is not noticeably affected by internal MB+ at concentrations of 500 microM or below, in the absence of external tetrodotoxin (TTX). However, 5 mM MB+ produces a visible suppression of IgON that is reversible following washout. A pseudo-first-order analysis of MB+ blocking kinetics suggests a drug binding site deep in the transmembrane voltage field (dz = 0.85, KD = 11 microM at 0 mV). The voltage sensitivity of the individual rate constants is highly asymmetric, suggesting that the major energy barrier for MB+ is very close to the axoplasmic margin of the voltage field. Reversing the Na+ gradient and direction of INa has little effect on the kinetics of MB+ block. The kinetic properties of state-dependent vs. state-independent blocking schemes are investigated and compared with our observations of MB+ block. Analysis of hooked sodium tail currents following depolarization to various test potentials demonstrates quantitatively that MB+ binds in a state-dependent manner to open sodium channels. The appropriateness of first-order kinetic analysis of drug block is then considered in light of these observations.  相似文献   

13.
Studies of crayfish Medial Giant nerve Fiber suggested that glutamate (GLU) released from the axon during action potential generation initiates metabolic and electrical responses of periaxonal glia. This investigation sought to elucidate the mechanism of GLU appearance extracellularly following axon stimulation. Axoplasm and periaxonal glial sheath from nerve fibers incubated with radiolabelled L-GLU contained radiolabeled GLU, glutamine (GLN), GABA, aspartate (ASP), and NAAG. Total radiolabel release was not altered by electrical stimulation of nerve cord loaded with [14C]-GLU by bath application or loaded with [14C]-GLU, [3H]-D-ASP, or [3H]-NAAG by axonal injection. However, radioactivity distribution among GLU and its metabolic products in the superfusate was changed, with NAAG accounting for the largest fraction. In axons incubated with radiolabeled GLU, the stimulated increase in radioactive NAAG in the superfusate coincided with the virtual clearance of radioactive NAAG from the axon. The increase in [3H]-GLU in the superfusion solution that was seen upon stimulation of nerve bathloaded with [3H]-NAAG was reduced when beta-NAAG, a competitive NAALADase inhibitor, was present. Together, these results suggest that some GLU is metabolized to NAAG in the giant axon and its periaxonal glia and that, upon stimulation, NAAG is released and converted to GLU by NAALADase. A quisqualate-, beta-NAAG-sensitive NAALADase activity was detected in nerve cord homogenates. Stimulation or NAAG administration in the presence of NAALADase inhibitor caused a transient hyperpolarization of the periaxonal glia comparable to that produced by L-GLU. The results implicate N-acetylaspartylglutamate (NAAG) and GLU as potential mediators. of the axon-glia interactions.  相似文献   

14.
Crayfish giant axons remain viable following internal perfusion with a mixture of fluoride and citrate salts. The relative favorability of various internal anions, and the dependence of resting and action potentials on internal cations are both similar to results on internally perfused squid axons. TEA widens the falling phase of the spike only from inside the axon, while DDT is active from either side of the membrane. Records of impedance changes show that effects of TEA and DDT on components of ionic conductances are similar to those found in other axons by voltage clamp measurements. Tannic acid perfused internally at a concentration of the order of 10 μM produces spontaneous activity, and a progressive increase in spike width. After 30 minutes, action potentials are “cardiac” type and are up to several minutes in duration. Records of impedance changes, and data from rapid changes in external ionic concentrations, suggest that the plateau phase of the spike is due to a maintained increase in sodium conductance. Since tannic acid is capable of crosslinking proteins and “rigidifying” protein monolayers, it is suggested that its effects on the axon may be the result of an interference with a conformational change in a membrane protein or protein-phospholipid complex during excitation.  相似文献   

15.
J M Huang  J Tanguy    J Z Yeh 《Biophysical journal》1987,52(2):155-163
Modification of sodium channels by chloramine-T was examined in voltage clamped internally perfused crayfish and squid giant axons using the double sucrose gap and axial wire technique, respectively. Freshly prepared chloramine-T solution exerted two major actions on sodium channels: (a) an irreversible removal of the fast Na inactivation, and (b) a reversible block of the Na current. Both effects were observed when chloramine-T was applied internally or externally (5-10 mM) to axons. The first effect was studied in crayfish axons. We found that the removal of the fast Na inactivation did not depend on the states of the channel since the channel could be modified by chloramine-T at holding potential (from -80 to -100 mV) or at depolarized potential of -30 mV. After removal of fast Na inactivation, the slow inactivation mechanism was still present, and more channels could undergo slow inactivation. This result indicates that in crayfish axons the transition through the fast inactivated state is not a prerequisite for the slow inactivation to occur. During chloramine-T treatment, a distinct blocking phase occurred, which recovered upon washing out the drug. This second effect of chloramine-T was studied in detail in squid axons. After 24 h, chloramine-T solution lost its ability to remove fast inactivation but retained its blocking action. After removal of the fast Na inactivation, both fresh and aged chloramine-T solutions blocked the Na currents with a similar potency and in a voltage-dependent manner, being more pronounced at lower depolarizing potentials.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Summary Electron microscopic studies show that transplanted segments of sensory axons of varying lengths degenerate within 7–14 days whereas transplanted segments of crustacean motor axons survive morphologically intact for 20–30 days. The middle portion of an isolated motor axon segment degenerates less rapidly than portions of the same axon located nearer the periphery or nearer the ventral nerve cord. One week after transplantation, glial cells appear to phagocytize sensory axons whereas glial cells around motor axons appear to hypertrophy and to have more rough endoplasmic reticulum. After three weeks, motor axons also appear to be phagocytized by glial cells.These data suggest that the glia surrounding isolated motor axons can change from a supportive to a destructive function, whereas glial cells surrounding severed sensory axons primarily have a destructive function. These and other data also indicate that crustacean motor axons receive significant trophic inputs from their own perikaryon, from post-synaptic contacts, and from adjacent glial cells. The possibility that adjacent healthy cells may supply metabolically deficient cells with needed substances could be a significant adaptive advantage for the evolution of multicellular organisms.Supported in part by an NIH grant (NS-1186101) to Dr. BittnerThe authors wish to thank Mr. Martis Ballinger and Mr. Robert Riess for their valuable assistance in all stages of this research  相似文献   

17.
Summary The thoracic homologue of the abdominal segmental giant neurone of crayfish Pacifastacus leniusculus is identified and described. It has a small cell body located in the anterior ventro-lateral quadrant of the ganglion and a large neuropil arborization, with dendrites aligned along the tracts of the giant fibres. The SG axon exits the ganglion within the major root which innervates the leg, usually in the anterior region of this root. Within 1–2 mm of the ganglion the axon terminates in a mass of fine branches, apparently randomly located within the base of the root.The SG receives suprathreshold input from the ipsilateral MG and LG fibres through rectifying electrical synapses. It makes output to FF motor neurones, also through electrical synapses. The SG also makes output to at least one corollary discharge interneurone. The SG receives depolarizing inhibitory synaptic potentials which can prevent its activation by the GFs. Some but not all of these synaptic potentials are common to similar potentials occurring in a large leg promotor motor neurone.Abbreviations AC anterior connective - GF giant fibre - IPSP inhibitory post-synaptic potential - LG lateral giant fibre - MG medial giant fibre - MoG motor giant neurone - PC posterior connective - PMM promotor motor neurone - r1 first root - r3 third root - rAD anterior distal root - rPD posterior distal root - rPM promotor muscle root - SG segmental giant neurone  相似文献   

18.
19.
Summary The ultrastructure of synapses between the cord giant fibres (lateral and medial) and the motor giant fibres in crayfish, Astacus pallipes, third abdominal ganglia have been examined. These electrotonic synapses are asymmetrical, they have synaptic vesicles only in the presynaptic fibre, and they have synaptic cleft widths normally of about 100 Å but narrowed to about 50 Å in restricted areas. Localized increases in density of the synaptic cleft and adjacent membranes also occur within a synapse, and synaptic vesicles are most tightly grouped at the membrane in such areas. Tight or gap junctions with 30 Å or narrower widths have not been found, but the junctions probably function in a similar way to gap junctions.Three small nerves are closely associated with the synapses between the giant fibres. One of these small nerves has round synaptic vesicles and is thought to be excitatory on morphological grounds; one has flattened vesicles and is thought to be inhibitory; and one is postsynaptic to the lateral giant and the two small presynaptic nerves. It is proposed that these small nerves modulate activity in the much larger giant fibre synapse.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号