首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Putrescine uptake and translocation were studied by feeding [3H] putrescine to roots of tomato seedlings ( Lycopersicon esculentum Miller, cv. Earlypak 7) at the stage of expanded cotyledons, of maize seedlings ( Zea mais L.) at the coleoptile stage, and of one year old pines ( Pinus pinea L.). Putrescine translocation was rapid as radioactivity appeared in the upper part of the seedlings within 30 min, continuing to increase up to 24 h, while it decreased in roots. The putrescine supplied was partly metabolized to spermidine and spermine in the course of 24 h. The transport was temperature-dependent as it increased with increasing temperature from 4°C to 30°C. In plants kept in 100% relative humidity the transport decreased by 27% compared to controls kept in 50% relative humidity. The existence of basipetal transport was assessed by feeding labeled putrescine to cotyledons or to a primary leaf of tomato plants at different stages of growth. The influence of ringing at the hypocotyl level on polyamine translocation in pine plants was studied in order to exclude cortical parenchyma and phloem from transport. Radioactivity decreased in the hypocotyl just above the ring and in the upper parts (epicotyls with needles), but long-distance transport was low affected indicating xylem transport. It is suggested that polyamine transport is not polar, and that it occurs mainly through xylem vessels.  相似文献   

2.
Summary A model based on the canal theory (Katou andFurumoto 1986 a, b) is proposed for the absorption of solute and water at the root periphery. The present canal model in the periphery and the model which was previously proposed for the exudation in the stele (Katou et al. 1987), are organized into a model for radial transport across excised plant roots, in the light of anatomical and physiological knowledge of maize roots. The canal equations for both canals are numerically solved to give quite a good explanation for the observed exudation of maize roots. It is found that the regulation of solute transport has a primary importance in the regulation of water transport across excised roots. The internal cell pressure of the symplast adjusts the water absorption at the root periphery to the water secretion into the vessels. There seems no need for this explanation of the radial water transport across roots to assume cell membranes with low reflection coefficient or variable water permeability. It would seem that the apoplast wall layers play a crucial role in metabolic control of water transport in roots as well as in hypocotyls.Abbreviations J s ex* the theoretically estimated rate of solute exudation per unit surface area of model maize roots - J that of volume exudation per unit surface area of model maize roots - the reflection coefficient of the cell membrane against solutes  相似文献   

3.
Water uptake by roots: effects of water deficit   总被引:35,自引:0,他引:35  
The variable hydraulic conductivity of roots (Lp(r)) is explained in terms of a composite transport model. It is shown how the complex, composite anatomical structure of roots results in a composite transport of both water and solutes. In the model, the parallel apoplastic and cell-to-cell (symplastic and transcellular) pathways play an important role as well as the different tissues and structures arranged in series within the root cylinder (epidermis, exodermis, cortex, endodermis, stelar parenchyma). The roles of Casparian bands and suberin lamellae in the root's endo- and exodermis are discussed. Depending on the developmental state of these apoplastic barriers, the overall hydraulic resistance of roots is either more evenly distributed across the root cylinder (young unstressed roots) or is concentrated in certain layers (exo- and endodermis in older stressed roots). The reason for the variability of root Lp(r), is that hydraulic forces cause a dominating apoplastic flow of water around protoplasts, even in the endodermis and exodermis. In the absence of transpiration, water flow is osmotic in nature which causes a high resistance as water passes across many membranes on its passage across the root cylinder. The model allows for a high capability of roots to take up water in the presence of high rates of transpiration (high demands for water from the shoot). By contrast, the hydraulic conductance is low, when transpiration is switched off. Overall, this results in a non-linear relationship between water flow and forces (gradients of hydrostatic and osmotic pressure) which is otherwise hard to explain. The model allows for special root characteristics such as a high hydraulic conductivity (water permeability) in the presence of a low permeability of nutrient ions once taken up into the stele by active processes. Low root reflection coefficients are in line with the idea of some apoplastic bypasses for water within the root cylinder. According to the composite transport model, the switch from the hydraulic to the osmotic mode is purely physical. In the presence of heavily suberized roots, the apoplastic component of water flow may be too small. Under these conditions, a regulation of radial water flow by water channels dominates. Since water channels are under metabolic control, this component represents an 'active' element of regulation. Composite transport allows for an optimization of the water balance of the shoot in addition to the well-known phenomena involved in the regulation of water flow (gas exchange) across stomata. The model is employed to explain the responses of plants to water deficit and other stresses. During water deficit, the cohesion-tension mechanism of the ascent of sap in the xylem plays an important role. Results are summarized which prove the validity of the coehesion/tension theory. Effects of the stress hormone abscisic acid (ABA) are presented. They show that there is an apoplastic component of the flow of ABA in the root which contributes to the ABA signal in the xylem. On the other hand, (+)-cis-trans-ABA specifically affects both the cell level (water channel activity) and water flow driven by gradients in osmotic pressure at the root level which is in agreement with the composite transport model. Hydraulic water flow in the presence of gradients in hydrostatic pressure remains unchanged. The results agree with the composite transport model and resemble earlier findings of high salinity obtained for the cell (Lp) and root (Lp(r)) level. They are in line with known effects of nutrient deprivation on root Lp(r )and the diurnal rhythm of root Lp(r )recently found in roots of LOTUS.  相似文献   

4.
Long-Distance Water Transport in Aquatic Plants   总被引:3,自引:0,他引:3       下载免费PDF全文
Pedersen O 《Plant physiology》1993,103(4):1369-1375
Acropetal mass flow of water is demonstrated in two submerged angiosperms, Lobelia dortmanna L. and Sparganium emersum Rehman by means of guttation measurements. Transpiration is absent in truly submerged plants, but the presence of guttation verifies that long-distance water transport takes place. Use of tritiated water showed that the water current arises from the roots, and the main flow of water is channeled to the youngest leaves. This was confirmed by measurement of guttation, which showed the highest rates in young leaves. Guttation rates were 10-fold larger in the youngest leaf of S. emersum (2.1 [mu]L leaf-1 h-1) compared with the youngest leaf of L. dortmanna (0.2 [mu]L leaf-1 h-1). This is probably due to profound species differences in the hydraulic conductance (2.7 x 10-17 m4 Pa-1 s-1 for S. emersum and 1.4 x 10-19 m4 Pa-1 s-1 for L. dortmanna). Estimates derived from the modified Hagen-Poiseuille equation showed that the maximum flow velocity in xylem vessels was 23 to 84 cm h-1, and the required root pressure to drive the flow was small compared to that commonly found in terrestrial plants. In S. emersum long-distance transport of water was shown to be dependent on energy conversion in the roots. The leaves ceased to guttate when the roots were cooled to 4[deg]C from the acclimatization level at 15[deg]C, whereas the guttation was stimulated when the temperature was increased to 25[deg]C. Also, the guttation rate decreased significantly when vanadate was added to the root medium. The observed water transport is probably a general phenomenon in submerged plants, where it can act as a translocation system for nutrients taken up from the rich root medium and thereby assure maximum growth.  相似文献   

5.
Root-synthesized cytokinins are transported to the shoot and regulate the growth, development, and stress responses of aerial tissues. Previous studies have demonstrated that Arabidopsis (Arabidopsis thaliana) ATP binding cassette (ABC) transporter G family member 14 (AtABCG14) participates in xylem loading of root-synthesized cytokinins. However, the mechanism by which these root-derived cytokinins are distributed in the shoot remains unclear. Here, we revealed that AtABCG14-mediated phloem unloading through the apoplastic pathway is required for the appropriate shoot distribution of root-synthesized cytokinins in Arabidopsis. Wild-type rootstocks grafted to atabcg14 scions successfully restored trans-zeatin xylem loading. However, only low levels of root-synthesized cytokinins and induced shoot signaling were rescued. Reciprocal grafting and tissue-specific genetic complementation demonstrated that AtABCG14 disruption in the shoot considerably increased the retention of root-synthesized cytokinins in the phloem and substantially impaired their distribution in the leaf apoplast. The translocation of root-synthesized cytokinins from the xylem to the phloem and the subsequent unloading from the phloem is required for the shoot distribution and long-distance shootward transport of root-synthesized cytokinins. This study revealed a mechanism by which the phloem regulates systemic signaling of xylem-mediated transport of root-synthesized cytokinins from the root to the shoot.

Phloem unloading via the apoplastic pathway is essential for shoot distribution and long-distance translocation of root-synthesized cytokinins from the root to the shoot through the xylem.  相似文献   

6.
The gypsy moth, Lymantria dispar, is a non-native species that continues to invade areas in North America. It spreads generally through stratified dispersal where local growth and diffusive spread are coupled with long-distance jumps ahead of the leading edge. Long-distance jumps due to anthropogenic movement of life stages is a well-documented spread mechanism. Another mechanism is the atmospheric transport of early instars and adult males, believed to occur over short distances. However, empirical gypsy moth population data continue to support the possibility of alternative methods of long-range dispersal. Such dispersal events seemed to have occurred in the mid- to late-1990s with spread across Lake Michigan to Wisconsin. Such dispersal would be against the prevailing wind flow for the area and would have crossed a significant physical barrier (Lake Michigan). The climatology of the region shows that vigorous cyclones can result in strong easterly winds in the area at the time when early instars are present. It is hypothesized that these storms would enable individuals to be blown across the Lake and explain the appearance of new population centers observed at several locations on the western shore of Lake Michigan nearly simultaneously. A synoptic climatology model coupled with population dynamics data from the area was parameterized to show an association between transport events and population spread from 1996 to 2007. This work highlights the importance of atmospheric transport events relative to the invasion dynamics of the gypsy moth, and serves as a model for understanding this mechanism of spread in other related biological invasions.  相似文献   

7.
Sucrose, hexoses, and raffinose play key roles in the plant metabolism. Sucrose and raffinose, produced by photosynthesis, are translocated from leaves to flowers, developing seeds and roots. Translocation occurs in the sieve elements or sieve tubes of angiosperms. But how is sucrose loaded into and unloaded from the sieve elements? There seem to be two principal routes: one through plasmodesmata and one via the apoplasm. The best-studied transporters are the H+/SUCROSE TRANSPORTERs (SUTs) in the sieve element-companion cell complex. Sucrose is delivered to SUTs by SWEET sugar uniporters that release these key metabolites into the apoplasmic space. The H+/amino acid permeases and the UmamiT amino acid transporters are hypothesized to play analogous roles as the SUT-SWEET pair to transport amino acids. SWEETs and UmamiTs also act in many other important processes—for example, seed filling, nectar secretion, and pollen nutrition. We present information on cell type-specific enrichment of SWEET and UmamiT family members and propose several members to play redundant roles in the efflux of sucrose and amino acids across different cell types in the leaf. Pathogens hijack SWEETs and thus represent a major susceptibility of the plant. Here, we provide an update on the status of research on intercellular and long-distance translocation of key metabolites such as sucrose and amino acids, communication of the plants with the root microbiota via root exudates, discuss the existence of transporters for other important metabolites and provide potential perspectives that may direct future research activities.

An update on intercellular and long-distance translocation of sugars and amino acids, including plant-root microbiota communication, other metabolite transporters is provided, and perspectives are discussed.  相似文献   

8.
The contribution of water-filled, selective membrane pores (water channels) is integrated into a general concept of water transport in plant tissue. The concept is based on the composite anatomical structure of tissues which results in a composite transport pattern. Three main pathways of water flow have been distinguished, ie the apoplastic, symplastic and transcellular (vacuolar) paths. Since the symplastic and transcellular components can not be distinguished experimentally, these components are summarized as a cell-to-cell component. Water channel activity may control the overall water flow across tissues provided that the contribution of the apoplastic component is relatively low. The composite transport model has been applied to roots where most of the data are available. Comparison of the hydraulic conductivity at the root cell and organ levels shows that, depending on the species, there may be a dominating cell-to-cell or apoplastic water flow. Most remarkably, there are differences in the hydraulic conductivity of roots which depend on the nature of the force used to drive water flows (osmotic or hydrostatic pressure gradients). This is predicted by the model. The composite transport model explains low reflection coefficients of roots, the variability in root hydraulic resistance and differences between herbaceous and woody species. It is demonstrated that there is also a composite transport of water at the membrane level (water channel arrays vs bilayer arrays). This results in low reflection coefficients of plasma membranes for certain test solutes as derived for isolated internodes of Chara. The titration of water channel activity in this alga with mercurials and its dependence on changes in temperature or external concentration show that water channels do not exclusively transport water. Rather, they are permeable to relatively big uncharged organic solutes. The result indicates that, at least for Chara, the concept of an exclusive transport of water across water channels has to be questioned.  相似文献   

9.
10.
Cadmium is readily taken up from soils by plants, depending on soil chemistry, and variably among species and cultivars; altered transpiration and xylem transport and/or translocation in the phloem could cause this variation in Cd accumulation, some degree of which is heritable. Using Triticum turgidum var. durum cvs Kyle and Arcola (high and low grain Cd accumulating, respectively), the objectives of this study were to determine if low-concentration Cd exposure alters transpiration, to relate transpiration to accumulation of Cd in roots and shoots at several life stages, and to evaluate the role of apoplastic bypass in the accumulation of Cd in shoots. The low abundance isotope (106)Cd was used to probe Cd translocation in plants which had been exposed to elemental Cd or were Cd-na?ve; apoplastic bypass was monitored using the fluorescent dye PTS (8-hydroxy-1,3,6-pyrenetrisulphonate). Differential accumulation of Cd by 'Kyle' and 'Arcola' could be partially attributed to the effect of Cd on transpiration, as exposure to low concentrations of Cd increased mass flow and concomitant Cd accumulation in 'Kyle'. Distinct from this, exposure of 'Arcola' to low concentrations of Cd reduced translocation of Cd from roots to shoots relative to root accumulation of Cd. It is possible, but not tested here, that sequestration mechanisms (such as phytochelatin production, as demonstrated by others) are the genetically controlled difference between these two cultivars that results in differential Cd accumulation. These results also suggest that apoplastic bypass was not a major pathway of Cd transport from the root to the shoot in these plants, and that most of the shoot Cd resulted from uptake into the stele of the root via the symplastic pathway.  相似文献   

11.
Uptake and translocation of calcium in cucumber   总被引:1,自引:0,他引:1  
Uptake and translocation of Ca2+(45Ca) were compared with water translocation in 12-day old intact plants and excised roots of cucumber ( Cucumis sativus L. var. Cilla), which had been cultivated in nutrient solution. No immediate reduction of Ca2+ uptake was found when water translocation was reduced by excision of the shoot. In the presence of 2,4-dinitrophenol Ca2+ translocation was reduced in the intact plants while water translocation was unchanged. It is suggested that regulation of Ca2+ uptake is primarily achieved in the root. The DNP-sensitive mechanism of Ca2+ uptake was associated with the root and probably represented transport through the endodermis into the stele.  相似文献   

12.
Ayre BG  Keller F  Turgeon R 《Plant physiology》2003,131(4):1518-1528
Substantial symplastic continuity appears to exist between companion cells (CCs) and sieve elements of the phloem, which suggests that small solutes within the CC are subject to indiscriminate long-distance transport via the translocation stream. To test this hypothesis, the distributions of exotic and endogenous solutes synthesized in the CCs of minor veins were studied. Octopine, a charged molecule derived from arginine and pyruvate, was efficiently transported through the phloem but was also transferred in substantial amounts to the apoplast, and presumably other non-phloem compartments. The disaccharide galactinol also accumulated in non-phloem compartments, but long-distance transport was limited. Conversely, sucrose, raffinose, and especially stachyose demonstrated reduced accumulation and efficient transport out of the leaf. We conclude that small metabolites in the cytosol of CCs do enter the translocation stream indiscriminately but are also subject to distributive forces, such as nonselective and carrier-mediated membrane transport and symplastic dispersal, that may effectively clear a compound from the phloem or retain it for long-distance transport. A model is proposed in which the transport of oligosaccharides is an adaptive strategy to improve photoassimilate retention, and consequently translocation efficiency, in the phloem.  相似文献   

13.
Water uptake by plant roots: an integration of views   总被引:20,自引:0,他引:20  
Steudle  Ernst 《Plant and Soil》2000,226(1):45-56
A COMPOSITE TRANSPORT MODEL is presented which explains the variability in the ability of roots to take up water and responses of water uptake to different factors. The model is based on detailed measurements of 'root hydraulics' both at the level of excised roots (root hydraulic conductivity, Lpr) and root cells (membrane level; cell Lp) using pressure probes and other techniques. The composite transport model integrates apoplastic and cellular components of radial water flow across the root cylinder. It explains why the hydraulic conductivity of roots changes in response to the nature (osmotic vs. hydraulic) and intensity of water flow. The model provides an explanation of the adaptation of plants to conditions of drought and other stresses by allowing for a `coarse regulation of water uptake' according to the demands from the shoot which is favorable to the plant. Coarse regulation is physical in nature, but strongly depends on root anatomy, e.g. on the existence of apoplastic barriers in the exo- and endodermis. Composite transport is based on the composite structure of roots. A `fine regulation' results from the activity of water channels (aquaporins) in root cell membranes which is assumed to be under metabolic and other control.  相似文献   

14.
15.
Summary A transport model for translocation of the protonophore CCCP across the red cell membrane has been established and cellular CCCP binding parameters have been determined. The time course of the CCCP redistribution across the red cell membrane, following a jump in membrane potential induced by valinomycin addition, has been characterized by fitting values of preequilibrium extracellular pHvs. time to the transport model. It is demonstrated, that even in the presence of valinomycin, the CCCP-anion is well behaved, in that the translocation can be described by simple electrodiffusion. The translocation kinetics conform to an Eyring transport model, with a single activation energy barrier, contrary to translocation across lipid bilayers, that is reported to follow a transport model with a plateau in the activation energy barrier. The CCCP anion permeability across the red cell membrane has been calculated to be close to 2.0×10–4 cm/sec at 37°C with small variations between donors. Thus the permeability of CCCP in the human red cell membrane deviates from that found in black lipid membranes, in which the permeability is found to be a factor of 10 higher.  相似文献   

16.
DNA translocation across the barriers of recipient cells is not well understood. Viral DNA delivery mechanisms offer an opportunity to obtain useful information in systems in which the process can be arrested to a number of stages. PRD1 is an icosahedral double-stranded (ds)DNA bacterial virus with an internal membrane. It is an atypical dsDNA phage, as any of the vertex spikes can be used for receptor recognition. In this report, we dissect the PRD1 DNA entry into a number of steps: (i) outer membrane (OM) penetration; (ii) peptidoglycan digestion; (iii) cytoplasmic membrane (CM) penetration; and (iv) DNA translocation. We present a model for PRD1 DNA entry proposing that the initial stage of entry is powered by the pressure build-up during DNA packaging. The viral protein P11 is shown to function as the first DNA delivery protein needed to penetrate the OM. We also report a DNA translocation machinery composed of at least three viral integral membrane proteins, P14, P18 and P32.  相似文献   

17.
Abstract: This review focuses on the uptake and primary translocation of boron (B), as well as on the subcellular compartmentation of B and its role in cell walls of higher plants. B uptake occurs via passive diffusion across the lipid bilayer, facilitated transport through major intrinsic proteins (MIPs), and energy-dependent transport through a high affinity uptake system. Whereas the first two represent passive uptake systems, which are constitutively present, the latter is induced by low B supply and is able to establish a concentration gradient for B between the root symplasm and the external medium. At high B supply, a substantial retention of B can be observed at xylem loading, and passive processes are most likely responsible for that. At low B supply, another energy-dependent high affinity transport system for B seems to be induced which establishes an additional concentration gradient between root symplasm and the xylem. The possible significance of all these processes at various B supplies is discussed. The role of soluble B complexes in uptake and primary translocation of B has been evaluated, but the few data available do not allow comprehensive conclusions to be drawn. In any case, there are no indications that soluble B complexes play a major role in either uptake or primary translocation of B. The subcellular compartmentation of B still remains a matter of controversy, but it is unequivocally clear that B is present in all subcellular compartments (apoplasm, cell wall, cytosol and vacuole). The relative distribution of B between these is dependent on plant species and experimental conditions and may vary greatly. Recent results on the well-established role of B in cell walls are summarized and their physiological significance discussed.  相似文献   

18.
Dispersal of biological control agents and their subsequent population growth can be a major determinant of the success of landscape-scale weed control programs. Biocontrol agents must be able to disperse across the distances between patches of host plants in order to colonize and control their targets. The presence of three species of biocontrol agents for purple loosestrife (Lythrum salicaria L.): Galerucella calmariensis L. (Coleoptera: Chrysomelidae), Galerucella pusilla Duftschmid (Coleoptera: Chrysomelidae), and Nanophyes marmoratus Goeze (Coleoptera: Brentidae), on relatively remote islands in the Columbia River Estuary (CRE) indicate that these organisms have the ability to disperse across large expanses of open flowing water to colonize remote sites. Previous studies suggest that colonization of these islands by active flight is highly unlikely; therefore, some other dispersal mechanism must be responsible for colonization. A spatial database of all known biocontrol agent release sites for purple loosestrife within 68 river kilometers of our CRE study area was developed and field surveys for biocontrol agents were conducted. A GIS was used to model dispersal distances between biocontrol agent recovery sites and the nearest conspecific release site. Tidal water flow within the CRE was assessed as a potential dispersal mechanism across the modeled distances. The ability of the biocontrol agents to withstand submersion was evaluated in field tests. Our results indicate that it is highly likely that passive water transport has been responsible for some of the long-distance open-water dispersal that would have been necessary for colonization of the remote islands where biocontrol agents were recovered.  相似文献   

19.
Abscisic acid (ABA) is one of the most important phytohormones involved in abiotic stress responses. ABA transport in plants is important in determining endogenous ABA levels and their resulting physiological responses. However, the regulation of ABA transport remains unclear. In this study, we compared the ABA concentrations and AhNCED1 levels at seedling and fruiting stages in peanut (Arachis hypogaea L.), in response to water stress. At the seedling stage, ABA initially accumulated in roots (1 h), followed by the lower stem (2 h) and finally in the upper stem (4 h). The expression/activity of an ABA biosynthesis rate-limiting enzyme, AhNCED1, showed the same accumulation patterns. In contrast, during the fruiting stage, ABA and AhNCED1 increases were initially detected in the first apical leaf of main stem, followed by the stem, and finally in the root. These results imply that biosynthesis of ABA in peanut plants subject to water deficiency could be dependent on developmental stage with the roots being the initial site of ABA biosynthesis during the seedling stage, whereas during the fruiting stage ABA biosynthesis occurs initially in the leaf. The distribution patterns of ABA in seedling stage peanuts in response to water stress were: root-stem-leaf, while in fruiting stage peanuts the distribution patterns of ABA were: leaf-stem-root. These findings will help to understand plant regulatory water deficit resistance mechanisms at seedling and fruiting stages and to advance our total understanding of the regulation of ABA transport.  相似文献   

20.
The role of aquaporins in root water uptake   总被引:42,自引:0,他引:42  
Javot H  Maurel C 《Annals of botany》2002,90(3):301-313
The capacity of roots to take up water is determined in part by the resistance of living tissues to radial water flow. Both the apoplastic and cell-to-cell paths mediate water transport in these tissues but the contribution of cell membranes to the latter path has long been difficult to estimate. Aquaporins are water channel proteins that are expressed in various membrane compartments of plant cells, including the plasma and vacuolar membranes. Plant aquaporins are encoded by a large multigene family, with 35 members in Arabidopsis thaliana, and many of these aquaporins show a cell-specific expression pattern in the root. Mercury acts as an efficient blocker of most aquaporins and has been used to demonstrate the significant contribution of water channels to overall root water transport. Aquaporin-rich membranes may be needed to facilitate intense water flow across root tissues and may represent critical points where an efficient and spatially restricted control of water uptake can be exerted. Roots, in particular, show a remarkable capacity to alter their water permeability over the short term (i.e. in a few hours to less than 2-3 d) in response to many stimuli, such as day/night cycles, nutrient deficiency or stress. Recent data suggest that these rapid changes can be mostly accounted for by changes in cell membrane permeability and are mediated by aquaporins. Although the processes that allow perception of environmental changes by root cells and subsequent aquaporin regulation are nearly unknown, the study of root aquaporins provides an interesting model to understand the regulation of water transport in plants and sheds light on the basic mechanisms of water uptake by roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号