首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Because of its relative inaccessibility, inflammatory cell extravasation within the airway circulation in vivo has been difficult to investigate in real time. A new method has been established using intravital microscopy in the anesthetized rat to visualize leukocytes in superficial postcapillary venules of the trachea. This technique has been validated using local superfusion of lipopolysaccharide (LPS) and N-formyl-methionyl-leucyl-phenylalanine (FMLP). Basal leukocyte rolling velocity (55.4 +/- 9.3 microm/s) and adhesion (1.4 +/- 0.3 cells/100 microm) were monitored in postcapillary venules (33.9 +/- 1.3 microm diameter). At all time points up to 90 min, these parameters were unaltered in control rats (n = 7). In contrast, vessels exposed to 1 microg/ml of LPS (n = 6) exhibited a 57% reduction in leukocyte rolling velocity and an increase in the number of adherent cells (4.7 +/- 1 cells/100 microm, P < 0.05). Superfusion with 0.1 microM of FMLP (n = 6) also resulted in a 45% reduction in rolling velocity and an increase in adherent cells (4 +/- 0.7 cells/100 microm, P < 0.05). Histological evaluation confirmed local stimulus-induced leukocyte extravasation. These results demonstrate leukocyte recruitment in the airway microvasculature and provide an important new method to study airway inflammation in real time.  相似文献   

3.
Since the time it was pioneered in 1992, intravital imaging of tumors at cellular resolution has offered us the extremely important opportunity of “seeing biology”. However, until now, most studies were monitoring tumor cell behavior in the same animal over short times, requiring the combining of acquired data into a hypothesis via statistical analysis. In the last several months, different groups have independently developed techniques to extend the time scale of intravital imaging to several days. This improvement allows one to address the connection between tumor cell behavior and the microenvironment which surrounds them. We can now assess dynamics of the cell-cell interactions in tumors, analyze tumor cell fate and changes in the tumor extracellular matrix which accompany tumor progression.  相似文献   

4.
The methods of intravital study of the cat lungs have been updated. A device has been designed for the investigation of microvessels in extended lung areas of spontaneously breathing closed-chest cats. The principles for quantitative analysis of microcirculatory lung parameters have been elaborated. These new methods allow the study of important natural phenomena of the lung microvascular functions.  相似文献   

5.
Since the time it was pioneered in 1992, intravital imaging of tumors at cellular resolution has offered us the extremely important opportunity of “seeing biology.” However, until now, most studies were monitoring tumor cell behavior in the same animal over short times, requiring the combining of acquired data into a hypothesis via statistical analysis. In the last year, different groups have independently developed techniques to extend the time scale of intravital imaging to several days. This improvement allows one to address the connection between tumor cell behavior and the microenvironment which surrounds them. We can now assess dynamics of the cell-cell interactions in tumors, analyze tumor cell fate and changes in the tumor extracellular matrix which accompany tumor progression.Key words: intravital, multiphoton, spinning disc, microenvironment, second harmonic generation, mammary imaging window, dorsal skinfold chamber, photoswitchingIntravital imaging of tumors at cellular resolution offers insight into the physiology of cells in vivo in real time. The first published study which included injectable dyes to monitor tumor metastasis inside the embryo was done by the group of Groom.1 Some years later, Farina,2 and then Naumov,3 and co-workers, used GFP-labeled tumor cells to study tumors by confocal scanning microscopy. Soon after, Brown,4 and Wang,5 and co-workers, introduced two-photon microscopes into their studies.Until recently, single cell-resolved intravital imaging in tumors commonly involved recording movies 4D (3D through time) with one or two channels, collecting data via multiphoton microscopy from one region at a time.68 The inner side of the orthotopic tumor is exposed by making a small incision in the skin and skin folding. This technique, termed ‘skin-flap’, allows for several hours of imaging in one animal. Data from several animals are combined into the final result averaging measurements as well as differences in tumor preparation, animal condition and genotype. Some low-resolution studies have proposed a reversible flap9 on the tumor tissue implanted several days earlier. However, visualized areas were not the same at each of the timepoints. Also, as skin flaps were opened repeatedly, they were potentially influencing the microenvironment by surgery-related immune/inflamatory-responses. In addition, several groups have been using a dorsal skinfold chamber10 in which the tumor is grown ectopically, in the space between the skin and glass coverslip on the back of the mouse. This preparation could be used for either low resolution measurements over several days, or short-term measurements at cellular resolution.In the last few months, several studies have included techniques which extend the time-scale of intravital imaging in tumors from hours to days (
TechniqueMIW + photoswitching12Dorsal skinfold + SHG recognition13Extended skinflap15
Orthotopic tumorsYesNoYes
Long-term anesthesia neededNoNoYes
Multiple imaging sessions availableYesYesNo
MicroscopyConfocal and multiphotonMultiphotonSpinning disc confocal
Depth of imaging∼120 µm12∼100 µm13<70 µm15
DetectorsPMT (1 for each channel)PMT (1 for each channel)Camera
Number of channels424
Open in a separate windowSegall-Condeelis groups11,12 have developed a technique to visualize and quantify invasion and intravasation of single tumor cells in orthotopic mammary tumors. They designed a mammary imaging window (MIW), which enables imaging the tumor in serial imaging sessions. Moreover, to properly position the animal on the microscope and keep the animal orientation the same over several sessions, they use a stereotactic imaging box.11 Due to cell replication and motility, angiogenesis and consequent changes in tissue shape, a registration landmark is essential in order to recognize the region of interest in each of the imaging sessions. In Kedrin et al.12 a photoswitchable protein Dendra2 was used as a tumor cell marker, making it possible to differentiate between total tumor cells (green) and chosen cells of interest (red). By photomarking and visualizing selected populations of cells within the tumor, team quantified and compared the metastatic behavior of cells in different tumor microenvironments within the same tumor. The number of imaging sessions which visualize a specific group of cells in areas surrounding major blood vessels is limited by high cell motility and intravasation. However, in areas where only microvessels are present (Fig. 1), this technique can monitor cell invasion of the surrounding environment for up to seven days.Open in a separate windowFigure 1Photoconverted regions which are not in the vicinity of major blood vessels show a relatively slow dispersion of cells throughout a seven day period. Images are the result of serial intravital imaging sessions (0–168 h after photoswitching) of mammary tumor cells which express cytoplasmic Dendra2. Fluorescence intensity at each time point was normalized to 0 h level. Photo converted region (red) is 150× 150µm at 0h.Similarly, in Perentes et al.,13 Boucher-Jain groups use serial imaging sessions made possible via dorsal chamber implantation and intravital multiphoton microscopy to study the mechanism of collagen fiber remodeling by tumor-associated fibroblasts. The internal landmark used in order to recognize and image the same microenvironment in several imaging sessions is collagen itself. Fibers are visualized by second harmonic generation (SHG), without any additional labeling. Since the resulting images are misaligned due to different animal orientations and tissue changes over serial imaging sessions, additional registration approach based on fluorescence intensity (Turboreg14) was applied during data post-processing. Images taken over nine-day periods were aligned based on similar bulk distribution of collagen fibers. Further, individual fibers were analyzed for a decrease in length and an increase in area overlap with surrounding GFP-fibroblasts.Werb and co-workers have used a different method when comparing the dynamics of stromal cells in different microenvironments of breast carcinoma, as presented in Egeblad et al.15 In order to optically access the tumor, they used an improved version of the ‘skin-flap’ technique. This allows work on transgenic mouse models, such as MMTV-PyMT,16 which can have several tumor stages present in one animal. Imaging was done over a single session that extends up to 27 h by carefully controlling temperature, anesthesia and animal hydration. While the use of spinning disc confocal microscopy limits imaging depth to ∼2 cell diameters deep into the tissue, large areas of the tumor can be imaged and with high speed.15 The high speed of acquisition results from simultaneous illumination of ∼1,000 rotating pinholes at a time17 and using cameras as detectors. This means that the limiting factor in the speed of data acquisition is the brightness of cells inside the tumor. As the excitation is achieved via single photon events, the implementation of additional laser lines is much cheaper and fairly straightforward. Moreover, by using a motorized stage which is controlled by software, several fields of view can be combined into mosaic images of a larger area. The final output of this set up is a 4D movie which contains up to four-channels, three z-sections, 45 timepoints per hour and compiles five fields into a mosaic view.Finally, Dunphy et al.18 recently proposed an interesting microcartography approach in which fluorescent beads are inserted inside the dorsal skinfold chamber as reference points. Based on the visualization of beads, coordinates of the region of interest are recalculated in each of the series of imaging sessions.We can now map the fate of tumor cells over days or monitor changes in the extracellular matrix inside the tumor as the tumor grows and progresses. These improvements allow assessment of the dynamics of cell-cell and cell-matrix interactions inside the tumor. Visualization and quantification of these interactions, the more precise definitions of microenvironments and the identification of stromal cells essential to tumor progression are all within reach. In addition, the analysis of mechanisms of drug action on single cells in real time in vivo, is now an achievable goal.  相似文献   

6.
Hemodynamic changes in cerebral microcirculation of cat under halothaneanesthesia: An intravital fluorescence video-microscopic study     
《Biorheology》1996,33(1):88
  相似文献   

7.
Technic of intravital study of microcirculation in m. cremaster in transmitted light     
V I Kozlov 《Biulleten' eksperimental'no? biologii i meditsiny》1971,71(5):121-123
  相似文献   

8.
Noninvasive intravital imaging of thymocyte dynamics in medaka     
Li J  Iwanami N  Hoa VQ  Furutani-Seiki M  Takahama Y 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(3):1605-1615
In vivo imaging of thymocytes has not been accomplished due to their localization deep within opaque body and high susceptibility to surgical stress. To overcome these problems, medaka is useful because of transparency and ex-uterine development. We report the noninvasive detection of thymocytes in transgenic medaka that express fluorescent protein under the control of immature-lymphocyte-specific rag1. We show that lymphoid progenitor cells colonize the thymus primordium in an anterior-to-posterior orientation-specific manner, revealing that extrathymic anterior components guide prevascular thymus colonization. We also show that developing thymocytes acquire "random walk motility" along with the expression of Ag receptors and coreceptors, suggesting that thymocyte walking is initiated at the developmental stage for repertoire selection. Thus, transgenic medaka enables real-time intravital imaging of thymocytes without surgical invasion.  相似文献   

9.
Role of intravital imaging in nanomedicine-assisted anti-cancer therapy     
《Current opinion in biotechnology》2021
  相似文献   

10.
Three‐dimensional intravital imaging in bone research     
Yuhao Liu  Quan Yuan  Shiwen Zhang 《Journal of biophotonics》2019,12(12)
Intravital imaging has emerged as a novel and efficient tool for visualization of in situ dynamics of cellular behaviors and cell‐microenvironment interactions in live animals, based on desirable microscopy techniques featuring high resolutions, deep imaging and low phototoxicity. Intravital imaging, especially based on multi‐photon microscopy, has been used in bone research for dynamics visualization of a variety of physiological and pathological events at the cellular level, such as bone remodeling, hematopoiesis, immune responses and cancer development, thus, providing guidance for elucidating novel cellular mechanisms in bone biology as well as guidance for new therapies. This review is aimed at interpreting development and advantages of intravital imaging in bone research, and related representative discoveries concerning bone matrices, vessels, and various cells types involved in bone physiologies and pathologies. Finally, current limitations, further refinement, and extended application of intravital imaging in bone research are concluded.   相似文献   

11.
Comparative study of intravital microcirculation and hemorheological changes following burn injury of different severity in rats     
Iu M Shtyklino  V I Udovichenko 《Biulleten' eksperimental'no? biologii i meditsiny》1979,88(9):284-286
It was shown in experiments on rats that burn injury is followed by microcirculatory disturbances, hemoconcentration and increasing blood viscosity that is especially pronounced in the vessels with low blood pressure. The microcirculatory changes in the mesentery correlated with the in vitro investigated dynamic viscosity and blood composition. The disturbances were more pronounced after severe burn followed by a mortal shock than after moderate burn without fatal consequences. This investigation confirms great importance of hemorheological changes and microcirculatory disturbances in the early period of burn disease.  相似文献   

12.
Structure of the calcineurin-NFAT complex: defining a T cell activation switch using solution NMR and crystal coordinates   总被引:2,自引:0,他引:2  
Takeuchi K  Roehrl MH  Sun ZY  Wagner G 《Structure (London, England : 1993)》2007,15(5):587-597
  相似文献   

13.
Restored interlaced volumetric imaging increases image quality and scanning speed during intravital imaging in living mice     
Maina Sogabe  Masayuki Ohzeki  Koji Fujimoto  Atsuko Sehara‐Fujisawa  Satoshi Nishimura 《Journal of biophotonics》2020,13(5)
Dynamic intravital imaging is essential for revealing ongoing biological phenomena within living organisms and is influenced primarily by several factors: motion artifacts, optical properties and spatial resolution. Conventional imaging quality within a volume, however, is degraded by involuntary movements and trades off between the imaged volume, imaging speed and quality. To balance such trade‐offs incurred by two‐photon excitation microscopy during intravital imaging, we developed a unique combination of interlaced scanning and a simple image restoration algorithm based on biological signal sparsity and a graph Laplacian matrix. This method increases the scanning speed by a factor of four for a field size of 212 μm × 106 μm × 130 μm, and significantly improves the quality of four‐dimensional dynamic volumetric data by preventing irregular artifacts due to the movement observed with conventional methods. Our data suggest this method is robust enough to be applied to multiple types of soft tissue.  相似文献   

14.
Basic features of microcirculation in traumatic shock (based on data from intravital microscopy of rat mesoappendix)     
O P Khrabrova 《Biulleten' eksperimental'no? biologii i meditsiny》1969,67(1):16-19
  相似文献   

15.
Static and dynamic errors in particle tracking microrheology          下载免费PDF全文
Savin T  Doyle PS 《Biophysical journal》2005,88(1):623-638
Particle tracking techniques are often used to assess the local mechanical properties of cells and biological fluids. The extracted trajectories are exploited to compute the mean-squared displacement that characterizes the dynamics of the probe particles. Limited spatial resolution and statistical uncertainty are the limiting factors that alter the accuracy of the mean-squared displacement estimation. We precisely quantified the effect of localization errors in the determination of the mean-squared displacement by separating the sources of these errors into two separate contributions. A "static error" arises in the position measurements of immobilized particles. A "dynamic error" comes from the particle motion during the finite exposure time that is required for visualization. We calculated the propagation of these errors on the mean-squared displacement. We examined the impact of our error analysis on theoretical model fluids used in biorheology. These theoretical predictions were verified for purely viscous fluids using simulations and a multiple-particle tracking technique performed with video microscopy. We showed that the static contribution can be confidently corrected in dynamics studies by using static experiments performed at a similar noise-to-signal ratio. This groundwork allowed us to achieve higher resolution in the mean-squared displacement, and thus to increase the accuracy of microrheology studies.  相似文献   

16.
SWIP—a stabilized window for intravital imaging of the murine pancreas     
Wei Du  Christian Adkisson  Xianjun Ye  Camille L. Duran  Benson Chellakkan Selvanesan  Claudia Gravekamp  Maja H. Oktay  John C. McAuliffe  John S. Condeelis  Nicole C. Panarelli  Robert J. Norgard  Yogev Sela  Ben Z. Stanger  David Entenberg 《Open biology》2022,12(6)
Pancreatitis and pancreatic ductal adenocarcinoma (PDAC) are grave illnesses with high levels of morbidity and mortality. Intravital imaging (IVI) is a powerful technique for visualizing physiological processes in both health and disease. However, the application of IVI to the murine pancreas presents significant challenges, as it is a deep, compliant, visceral organ that is difficult to access, easily damaged and susceptible to motion artefacts. Existing imaging windows for stabilizing the pancreas during IVI have unfortunately shown poor stability for time-lapsed imaging on the minutes to hours scale, or are unable to accommodate both the healthy and tumour-bearing pancreata. To address these issues, we developed an improved stabilized window for intravital imaging of the pancreas (SWIP), which can be applied to not only the healthy pancreas but also to solid tumours like PDAC. Here, we validate the SWIP and use it to visualize a variety of processes for the first time, including (1) single-cell dynamics within the healthy pancreas, (2) transformation from healthy pancreas to acute pancreatitis induced by cerulein, and (3) the physiology of PDAC in both autochthonous and orthotopically injected models. SWIP can not only improve the imaging stability but also expand the application of IVI in both benign and malignant pancreas diseases.  相似文献   

17.
Live‐cell imaging of octaarginine‐modified polymer dots via single particle tracking     
Yao Luo  Yuping Han  Xingjie Hu  Min Yin  Changfeng Wu  Qian Li  Nan Chen  Yun Zhao 《Cell proliferation》2019,52(2)
  相似文献   

18.
High throughput inclusion body sizing: Nano particle tracking analysis          下载免费PDF全文
Wieland N. Reichelt  Andreas Kaineder  Markus Brillmann  Lukas Neutsch  Alexander Taschauer  Hans Lohninger  Christoph Herwig 《Biotechnology journal》2017,12(6)
The expression of pharmaceutical relevant proteins in Escherichia coli frequently triggers inclusion body (IB) formation caused by protein aggregation. In the scientific literature, substantial effort has been devoted to the quantification of IB size. However, particle‐based methods used up to this point to analyze the physical properties of representative numbers of IBs lack sensitivity and/or orthogonal verification. Using high pressure freezing and automated freeze substitution for transmission electron microscopy (TEM) the cytosolic inclusion body structure was preserved within the cells. TEM imaging in combination with manual grey scale image segmentation allowed the quantification of relative areas covered by the inclusion body within the cytosol. As a high throughput method nano particle tracking analysis (NTA) enables one to derive the diameter of inclusion bodies in cell homogenate based on a measurement of the Brownian motion. The NTA analysis of fixated (glutaraldehyde) and non‐fixated IBs suggests that high pressure homogenization annihilates the native physiological shape of IBs. Nevertheless, the ratio of particle counts of non‐fixated and fixated samples could potentially serve as factor for particle stickiness. In this contribution, we establish image segmentation of TEM pictures as an orthogonal method to size biologic particles in the cytosol of cells. More importantly, NTA has been established as a particle‐based, fast and high throughput method (1000–3000 particles), thus constituting a much more accurate and representative analysis than currently available methods.  相似文献   

19.
Quantifying and visualising the nuances of cellular dynamics in vivo using intravital imaging     
《Current opinion in cell biology》2021
Intravital imaging is a powerful technology used to quantify and track dynamic changes in live cells and tissues within an intact environment. The ability to watch cell biology in real-time ‘as it happens’ has provided novel insight into tissue homeostasis, as well as disease initiation, progression and response to treatment. In this minireview, we highlight recent advances in the field of intravital microscopy, touching upon advances in awake versus anaesthesia-based approaches, as well as the integration of biosensors into intravital imaging. We also discuss current challenges that, in our opinion, need to be overcome to further advance the field of intravital imaging at the single-cell, subcellular and molecular resolution to reveal nuances of cell behaviour that can be targeted in complex disease settings.  相似文献   

20.
Diatrack particle tracking software: Review of applications and performance evaluation          下载免费PDF全文
Pascal Vallotton  Antoine M. van Oijen  Cynthia B. Whitchurch  Vladimir Gelfand  Leslie Yeo  Georgios Tsiavaliaris  Stephanie Heinrich  Elisa Dultz  Karsten Weis  David Grünwald 《Traffic (Copenhagen, Denmark)》2017,18(12):840-852
Object tracking is an instrumental tool supporting studies of cellular trafficking. There are three challenges in object tracking: the identification of targets; the precise determination of their position and boundaries; and the assembly of correct trajectories. This last challenge is particularly relevant when dealing with densely populated images with low signal‐to‐noise ratios—conditions that are often encountered in applications such as organelle tracking, virus particle tracking or single‐molecule imaging. We have developed a set of methods that can handle a wide variety of signal complexities. They are compiled into a free software package called Diatrack. Here we review its main features and utility in a range of applications, providing a survey of the dynamic imaging field together with recommendations for effective use. The performance of our framework is shown to compare favorably to a wide selection of custom‐developed algorithms, whether in terms of localization precision, processing speed or correctness of tracks.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号