首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. The abilities of dinitrophenol, NaCl, Ruthenium Red and the Ca2+-selective ionophore A23187 to release 45 Ca2+ from isolated hepatocytes and liver mitochondria (incubated at 37 degrees C in the presence of 0.1 microM-free Ca2+, Mg2+, ATP and phosphate ions) were compared with the action of adrenaline on 45Ca2+ release from isolated hepatocytes. The effects of adrenaline were most closely described by those of the ionophore A23187. 2. In isolated hepatocytes, a release of 45Ca2+ and stimulation of O2 utilization similar to that induced by adrenaline was observed in the presence of 500 and 20 microM-arachidonic acid respectively. The effect of arachidonic acid on 45Ca2+ release was not specific for this unsaturated fatty acid. 3. Inhibitors of arachidonic acid metabolism, including indomethacin and eicosa-5,811,14-tetraynoic acid, did not block the effects of adrenaline on 45Ca2+ or glucose release from isolated hepatocytes. 4. The ability of adrenaline to stimulate 45Ca2+ release from isolated hepatocytes was rapidly reversed after the subsequent addition of phenoxybenzamine to the cell suspension, and was completely blocked by 0.5 mM-dibucaine. 5. The results are consistent with the action of a Ca2+-selective ionophore in the mechanism by which adrenaline induces the release of Ca2+ from mitochondria in the liver cell and indicate that it is unlikely that arachidonic acid or a metabolite of arachidonic acid is involved in this process.  相似文献   

2.
Replacing extracellular Na+ with choline transiently increased cytoplasmic free Ca2+ ([Ca2+]i) more than 5-fold in coronary endothelial cells. Removing external Na+ stimulated 45Ca2+ efflux approximately 4-fold and influx approximately 1.7-fold. The stimulation of efflux was independent of extracellular Ca2+ and the osmotic Na+ substitute. The release of stored Ca2+, rather than Ca2+ influx via Na(+)-Ca2+ exchange, probably causes the increase in [Ca2+]i and 45Ca2+ efflux. Cadmium or decreasing external, not intracellular, pH transiently increased [Ca2+]i. Cd2+ and some other divalent metals also stimulated 45Ca2+ efflux. The potency order of the metals that stimulated efflux was Cd2+ greater than CO2+ greater than Ni2+ greater than Fe2+ greater than Mn2+. Incubating the cells with Zn2+ prior to assaying efflux in the absence of Zn2+ strongly inhibited the stimulation of 45Ca2+ efflux by Cd2+, pH 6, and the removal of external Na+ without affecting the stimulation of efflux by ATP. These findings support the hypothesis that certain trace metals or decreasing external Na+ or pH trigger the release of stored Ca2+ by stimulating a cell surface "receptor."  相似文献   

3.
An increase in concentration of cytosolic Ca2+ ([Ca2+]i) is associated with an accelerated influx of 45Ca2+ when cultured RBL-2H3 cells are stimulated with either antigen or analogs of adenosine although these agents act via different receptors and coupling proteins (Ali, H., Cunha-Melo, J.R., Saul, W.F., and Beaven, M.A. (1990) J. Biol. Chem. 265, 745-753). The same mechanism probably operates for basal Ca2+ influx in unstimulated cells and for the accelerated influx in stimulated cells. This influx had the following characteristics. 1) It was decreased when cells were depolarized with high external K+; 2) it was blocked by other cations (La3+ greater than Zn2+ greater than Cd2+ greater than Mn2 = Co2+ greater than Ba2+ greater than Ni2+ greater than Sr2+) either by competing with Ca2+ at external sites (e.g. La3+ or Zn2+) or by co-passage into the cell (e.g. Mn2+ or Sr2+); and 3) the inhibition of influx by K+ and the metal ions had exactly the same characteristics whether cells were stimulated or unstimulated even though influx rates were different. The dependence of various cellular responses on influx of Ca2+ was demonstrated as follows. The stimulated influx of Ca2+, rise in [Ca2+]i, and secretion, could be blocked in a concentration-dependent manner by increasing the concentration of La3+, but concentrations of La3+ (greater than 20 microM) that suppressed influx to below basal rates of influx markedly suppressed the hydrolysis of inositol phospholipids (levels of inositol 1,4,5-trisphosphate were unaffected). Some metal ions, e.g. Mn2+ and Sr2+, however, supported the stimulated hydrolysis of inositol phospholipid and some secretion in the absence of Ca2+. Thus a basal rate of influx of Ca2+ was required for the full activation of inositol phospholipid hydrolysis, but in addition an accelerated influx was necessary for exocytosis.  相似文献   

4.
Vasopressin caused a 40% inhibition of 45Ca uptake after the addition of 0.1 mM-45Ca2+ to Ca2+-deprived hepatocytes. At 1.3 mM-45Ca2+, vasopressin and ionophore A23187 each caused a 10% inhibition of 45Ca2+ uptake, whereas La3+ increased the rate of 45Ca2+ uptake by Ca2+-deprived cells. Under steady-state conditions at 1.3 mM extracellular Ca2+ (Ca2+o), vasopressin and La3+ each increased the rate of 45Ca2+ exchange. The concentrations of vasopressin that gave half-maximal stimulation of 45Ca2+ exchange and glycogen phosphorylase activity were similar. At 0.1 mM-Ca2+o, La3+ increased, but vasopressin did not alter, the rate of 45Ca2+ exchange. The results of experiments performed with EGTA or A23187 or by subcellular fractionation indicate that the Ca2+ taken up by hepatocytes in the presence of La3+ is located within the cell. The addition of 1.3 mM-Ca2+o to Ca2+-deprived cells caused increases of approx. 50% in the concentration of free Ca2+ in the cytoplasm [( Ca2+]i) and in glycogen phosphorylase activity. Much larger increases in these parameters were observed in the presence of vasopressin or ionophore A23187. In contrast with vasopressin, La3+ did not cause a detectable increase in glycogen phosphorylase activity or in [Ca2+]i. It is concluded that an increase in plasma membrane Ca2+ inflow does not by itself increase [Ca2+]i, and hence that the ability of vasopressin to maintain increased [Ca2+]i over a period of time is dependent on inhibition of the intracellular removal of Ca2+.  相似文献   

5.
1. Rates of Ca2+ inflow across the hepatocyte plasma membrane in the presence of vasopressin were estimated by using quin2. 2. Plots of the rate of Ca2+ inflow as a function of the intracellular quin2 concentration reached a plateau at about 1.7 mM intracellular quin2. Ca2+ inflow was inhibited by 60% in the presence of 400 microM-verapamil. 3. A plot of the rate of Ca2+ inflow as a function of the concentration of extracellular Ca2+ ([Ca2+]o) was biphasic. The second (slower) phase showed no sign of saturation at values of [Ca2+]o up to 5 mM. It is concluded that, in the presence of vasopressin, Ca2+ flows into the liver cell by two different processes, one of which is not readily saturated by Ca2+o. 4. The effect of the replacement of extracellular NaCl by choline or tetramethylammonium chloride on cellular Ca2+ movement was found to depend on the presence or absence of intracellular quin2. 5. In cells loaded with quin2 and incubated in the presence of choline or tetramethylammonium chloride, a small decrease in the basal intracellular free Ca2+ concentration ([Ca2+]i) was observed, and the increase in [Ca2+]i caused by the addition of vasopressin was considerably diminished when compared with cells incubated in the presence of NaCl. In cells loaded with quin2, replacement of NaCl by choline chloride caused a decrease in Ca2+ inflow in the presence of vasopressin, as measured by using quin2 or 45Ca2+ exchange, whereas no change in Ca2+ inflow was observed in the absence of vasopressin. 6. In cells not loaded with quin2, replacement of NaCl by choline chloride did not alter Ca2+ inflow either in the presence or in the absence of vasopressin. 7. It is concluded that (i) Ca2+ inflow through the basal and receptor-activated Ca2+ inflow systems does not involve the inward movement of Ca2+ in exchange for Na+ or the induction of Ca2+ inflow by intracellular Na+, and (ii) the presence of both intracellular quin2 and extracellular choline or tetramethylammonium chloride (in place of NaCl) inhibits Ca2+ inflow through the receptor-activated Ca2+ inflow system but not through the basal Ca2+ inflow system, and inhibits the release of Ca2+ from intracellular stores.  相似文献   

6.
We showed earlier that insulin stimulated sugar transport in adrenal chromaffin cells (Bigornia, L. and Bihler, I. Biochim. Biophys. Acta 885, 335-344). Transport regulation and its Ca2+ -dependence was further investigated in isolated bovine adrenal chromaffin cells, serving as a model of a homogeneous neuronal cell population. Uptake of the nonmetabolizable glucose analogue, 3-O-methyl-D-glucose was stimulated by hyperosmolar medium, and this effect was abolished in the absence of external Ca2+, or depressed in the presence of La3+ or the slow Ca2+ channel blocker methoxyverapamil. Basal transport was also stimulated by factors (acetylcholine, carbamylcholine, low-Na+ medium), which cause Ca2+ -dependent catecholamine release, and these effects were abolished in Ca2+ -free medium. In addition insulin, acetylcholine, hyperosmolar and low-Na+ medium significantly increased 45Ca uptake. Thus, glucose transport in adrenal chromaffin cells was stimulated by insulin and hyperosmolarity in a Ca2+ -dependent manner, as in muscle. Sensitivity to secretory stimuli, a regulatory feature perhaps characteristic of this cell type, was also demonstrated. In contrast to muscle, sugar transport was not affected by Na+ -pump inhibition, metabolic inhibitors or the Na+ ionophore monensin, suggesting that Ca2+ influx by Na+/Ca2+ exchange does not play a significant role in the activation of sugar transport in chromaffin cells.  相似文献   

7.
The membraneous guanylate cyclase of cilia from Paramecium tetraurelia used MgGTP and MnGTP as substrate with Michaelis constants for GTP of 71.5 microM and 36 microM, respectively. A linear Arrhenius plot indicated that a single enzyme entity exists not sensitive to possible phase transitions of membrane lipids. Guanylate cyclase is activated by low concentrations (less than 100 microM) and inhibited by high concentrations (greater than 100 microM) of calcium, half-maximal effects were obtained with 8 microM and 500 microM Ca2+, respectively. Only strontium ions displayed partial activating and inhibiting potency, all other divalent cations tested, Ba2+, Fe2+, Co2+, Mn2+, Sn2+ and Ni2+ had no effect on guanylate cyclase activity. Ca2+ activation increased V; Km remained identical. The Ca2+ stimulated activity was not inhibited by trifluoperazine, tentatively suggesting that the stimulation may not be mediated by calmodulin. Ca2 inhibition was due to a single binding site of Ca2+ at the guanylate cyclase as evidence by a Hill coefficient h = -1 and was noncompetitive. The lanthanides La3+, Ce3+ and Tb3+ were powerful inhibitors of guanylate cyclase, with La3+ the half-maximal effect was obtained with 0.6 microM, it was kinetically a mixed-type inhibition. La3+ and CA2+ competed for the same binding site on the guanylate cyclase as determined by detailed kinetic analysis. Addition of EDTA reversed the activation and inhibition by Ca2+ and the inhibition by La3+. It is discussed that guanylate cyclase may be the initial target enzyme in the cilia for the calcium transient of the calcium-potassium action potential of Paramecium.  相似文献   

8.
The ability of alkaline earth metals (M2+) to substitute for Ca2+ in Na+-Ca2+ exchange was examined in sarcolemmal vesicles isolated from the canine heart. 85Sr2+ and 133Ba2+, in addition to 45Ca2+, were used to determine the characteristics of Na+-M2+ exchange. The Na+i-dependent M2+ uptake was measured as a function of time, with t ranging from 0.5 to 360 s, [Na+]i = 140 mM and [M2+]o = 40 microM. This function was linear for Ca2+ and Sr2+ uptake for approx. 6 s and for Ba2+ for about 60 s. Plateau levels were achieved within 120 s for Ca2+ and Sr2+ but Ba2+ took considerably longer. The Km values for Na+-M2+ exchange, derived from Eadie-Hofstee plots, were 30, 58, and 73 microM for Ca2+, Sr2+ and Ba2+, respectively. The Na+i-dependent uptake of all three ions was stimulated in the presence of 0.36 microM valinomycin. Na+-Ca2+ exchange was also measured in the presence of either 20 microM Sr2+ or 100 microM Ba2+. Both of these ions behaved (at these concentrations) as competitive inhibitors of Na+-Ca2+ exchange with the KI being 32 microM for Sr2+ and 92 microM for Ba2+. Passive efflux was determined by first allowing Na+-M2+ exchange to continue to plateau values and then diluting the loaded vesicles in the presence of EGTA. The rate constants for the passive efflux were 8.4, 6.3 and 4.4 min-1 for Ca2+, Sr2+ and Ba2+, respectively.  相似文献   

9.
The contribution of Ca2+ channels and Na+/Ca2+ exchange to Ca2+ uptake in rat brain synaptosomes upon long- (t greater than or equal to 30 s) and short-term (t less than 30 s) depolarization by high K+ was studied by measuring the 45Ca content and free Ca2+ concentration (from Quin-2 fluorescence). At 37 degrees C, the system responsible for the K+-stimulated uptake of 45Ca (t greater than or equal to 30 s) and the Na+/Ca+ exchanger are characterized by a similar concentration dependence of external Ca2+ (Ca0(2+] and K0+ as well as by an equal sensitivity to verapamil (Ki = approximately 20-40 microM) and La2+ (Ki = approximately 50 microM). These data and the results from predepolarization suggest that the 45Ca entry into synaptosomes at t greater than or equal to 30 s is due to the activation of Na+/Ca+ exchange caused by its electrogenic component, while the insignificant contribution of Ca2+ channels can be accounted for by their inactivation. At low temperatures (2-4 degrees C) which decelerate the inactivation, the initial phase of 45Ca uptake is fully provided for by Ca2+ channels, showing a lower (as compared to the exchanger) affinity for Ca0(2+) (K0.5 greater than 1 mM)m a greater sensitivity to La3+ (Ki = approximately 0.2-0.3 microM) and verapamil (Ki = approximately 2-3 microM); these channels are fully inactivated by predepolarization with K0+, ouabain and batrachotoxin. The Ca2+ channels can be related to T-type channels, since they are not blocked by nicardipine and niphedipine.  相似文献   

10.
The Ca2+ pump of the plasma membrane of human red blood cells is associated with the activity of a (Ca2+ + Mg2+)-ATPase. Both the ATPase and the pump are stimulated above basal activities by calmodulin, an ubiquitous Ca2+-binding protein. Calmodulin isolated from human red blood cells was shown to be equipotent and equieffective with that isolated from beef brain. Half-maximal activation of ATPase (isolated red blood cell membranes, 37 C) and transport (inside-out red blood cell membrane vesicles, 25 C) were obtained with 2.5 and 4.4 nM calmodulin, respectively. Ca2+ dependence of Ca2+ transport was measured in the absence and in the presence of 50 nM calmodulin. At all Ca2+ concentrations above 2 X 10(-7) M Ca2+, the rate of transport was greater in the presence of calmodulin. The results implicate calmodulin in the regulation of the plasma membrane Ca2+ pump, but the mechanism(s) remain to be elucidated.  相似文献   

11.
The effects of monovalent (Li+, Cs+) divalent (Cu2+, Ca2+, Sr2+, Ba2+, Zn2+, Cd2+, Hg2+, Pb2+, Mn2+, Fe2+, Co2+, Ni2+) and trivalent (Cr3+, Fe3+, Al3+) metals ions on hexokinase activity in rat brain cytosol were compared at 500 microM. The rank order of their potency as inhibitors of brain hexokinase was: Cr3+ (IC50 = 1.3 microM) greater than Hg2+ = Al3+ greater than Cu2+ greater than Pb2+ (IC50 = 80 microM) greater than Fe3+ (IC50 = 250 microM) greater than Cd2+ (IC50 = 540 microM) greater than Zn2+ (IC50 = 560 microM). However, at 500 microM Co2+ slightly stimulated brain hexokinase whereas the other metal ions were without effect. That inhibition of brain glucose metabolism may be an important mechanism in the neurotoxicity of metals is suggested.  相似文献   

12.
In a previous study we noted that the release of D-[3H]aspartate evoked by non-N-methyl-D-aspartate (non-NMDA) receptor agonists in cultured rat cerebellar granule cells was enhanced in the absence of extracellular Na+. To explain this apparent paradox, we tried in the present investigation to correlate the effect of Na+ removal on the kainate (KA)- and quisqualate (QA)-induced D-[3H]aspartate release with that on KA- and QA-induced 45Ca2+ accumulation. The releasing activity of KA, which was only partially Ca2+ dependent in the presence of Na+, became totally Ca2+ dependent in its absence. Moreover, the releasing activity of QA, which was Ca2+ independent in the presence of Na+, became 50% Ca2+ dependent in the absence of the monovalent cation. The releasing action of both agonists was in all cases antagonized by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and that induced by KA was also sensitive to kynurenic acid. When glutamate was tested as an agonist in the presence of Na+, it was found that its D-[3H]aspartate releasing action was Ca2+ independent and was largely due to heteroexchange. The evoked release was Ca2+ independent, scarcely sensitive to CNQX, and insensitive to NMDA antagonists. In Na(+)-free medium, the glutamate-evoked D-[3H]aspartate release was lower (due to the abolishment of heteroexchange), but was totally Ca2+ dependent and antagonized by CNQX and kynurenate. KA (30 microM-1 mM) stimulated the accumulation of 45Ca2+ in a dose-dependent and CNQX-sensitive way, the effect being progressively higher as the Na+ concentration in the medium was decreased. Li+ affected KA-induced 45Ca2+ accumulation in a way similar to Na+, although 45Ca2+ uptake was somewhat lower in Li(+)-containing medium. The voltage-activated calcium channel antagonists La3+ and (-)-202-791 caused only a limited inhibition of the KA-induced 45Ca2+ influx both in the presence and in the absence of Na+. Under all the conditions tested [presence and absence of Na+ and of (-)-202-791], the kainate-induced 45Ca2+ uptake was scarcely sensitive to the NMDA antagonist 2-amino-5-phosphonovalerate. QA and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid also stimulated 45Ca2+ influx in a CNQX-sensitive way, the effect being enhanced in Na(+)-free media. These agonists were, however, less effective than KA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
A Na+/Ca2+ exchange mechanism has been recently described in human neutrophils that constitutes the principal pathway for Ca2+ influx into resting cells. The potential role of this system in regulating the respiratory burst in response to activation by the chemotactic tripeptide N-formyl-methionyl-leucyl-phenylalanine was explored. In the presence of 1 mM Ca2+, a variety of di- and trivalent cations suppressed the generation of O(-2) radicals in a series of decreasing efficacy: La3+ approximately Zn2+ much greater than Sr2+ approximately Cd2+ greater than Ba2+ greater than Co2+ greater than Ni2+ approximately Mg2+. This sequence is similar to their rank order of activity in inhibiting 45Ca2+ influx via Na+/Ca2+ counter-transport. Benzamil, phenamil, and 2',4'-dichlorobenzamil, analogues of amiloride which selectively block Na+/Ca2+ exchange in neutrophils, likewise suppressed the release of O(-2) with apparent Ki values of approximately 30 microM. The effect of the cations was competitive with Ca2+, while the interaction between the benzamil derivatives and Ca2+ appeared to be noncompetitive in nature. Both the divalent cations and benzamil also inhibited the rise in cytoplasmic Ca2+ as monitored by fura-2 fluorescence: these agents reduced peak cytosolic Ca2+ levels after N-formyl-methionyl-leucyl-phenylalanine stimulation to values seen in the absence of extracellular Ca2+. These results are compatible with the hypothesis that the influx of Ca2+ via Na+/Ca2+ exchange contributes to the transient elevation in intracellular free Ca2+. The polyvalent cations block the entry of critical Ca2+ ions by competing with Ca2+ for binding to the translocation site on the exchange carrier, while benzamil acts by lowering the maximal transport rate. These studies emphasize that Na+/Ca2+ exchange through its effects on cytoplasmic Ca2+ plays a major regulatory role in activation of the respiratory burst in chemotactic factor-stimulated neutrophils.  相似文献   

14.
The tissue/medium distribution of the nonmetabolized glucose analog 3-O-methyl-D-glucose was measured in mouse diaphragm muscle and related to changes in 45Ca influx, Na+ content and Na+-pump activity. In the presence of external Ca2+ the sodium ionophore monensin greatly increased cellular Na+ content (and decreased K+ content) although 86Rb uptake, reflecting Na+-pump activity was increased. Concomitantly, 45Ca influx was stimulated, presumably through activation of Na+-Ca2+ exchange. In parallel to the rise in Ca2+ influx sugar transport was also increased. Sugar transport was also increased by monensin in the nominal absence of external Ca2+, when Ca2+ influx was minimal. To test if monensin releases Ca2+ from intracellular storage sites in the absence of external Ca2+, the ionophore was added to medium perfusing rat hind limb preparations and the total Ca content of muscle mitochondria was determined. When Ca2+ was present in the perfusate, monensin increased the mitochondrial Ca content. In the absence of Ca2+, the mitochondrial Ca content was lower and was further depressed by monensin, suggesting that elevation of internal Na+ by monensin may increase mitochondrial Ca2+ loss via activation of Na+-Ca2+ exchange across the mitochondrial membrane. The above results are consistent with the effect of monensin on sugar transport being due to alterations in Ca2+ distribution. They support the earlier conclusion that regulation of sugar transport in muscle is Ca2+ dependent.  相似文献   

15.
Calcium-Activated ATPases in Presynaptic Nerve Endings   总被引:7,自引:5,他引:2  
We studied the properties of calcium-activated ATPases present in preparations of isolated presynaptic nerve ending (synaptosome) and its subfractions from mouse brain. ATPase activity in the preparation was stimulated by Ca2+ and by Mg2+, but not by Na+ and K+, when each was added alone. The substrate specificities were found to be similar. The ATPases hydrolyzed only the high-energy phosphate bond and similar activity was exhibited for all nucleoside triphosphates tested (ATP, CTP, GTP, UTP). Moreover, the enzymes were insensitive to mitochondrial markers and to ouabain, but were inhibited by La3+. La3+ produced uncompetitive inhibition of Ca2+-ATPase in intact synaptosomes. Inhibition by La3+ was greatly increased after lysis of the synaptosomes, suggesting that the active sites of the enzymes may be on the cytosolic face of the membranes. The Ca2+-ATPase activity in synaptosomes was increased by increasing concentrations of external K+, suggesting that Ca2+ influx may be involved The Ca2+-ATPase in synaptosomal plasma membranes and synaptic vesicles had higher specific activities than those of intact synaptosomes and were activated, both in the presence and the absence of Mg2+, by Ca2+ concentrations approximating the intracellular level (10(-7) M). It is concluded that the nonmitochondrial synaptosomal Ca2+-ATPase may play an important role in the regulation of intracellular Ca2+.  相似文献   

16.
We investigated the hypothesis that extracellular Na+ is required for the rapid mobilization of Ca2+ by rat parotid cells after adrenergic stimulation. When Na+ salts in the media were osmotically replaced with either choline chloride (+atropine) or sucrose, efflux of 45Ca2+ from preloaded cells, caused by 10 microM-(-)-adrenaline, was unchanged. Similarly adrenaline stimulated 45Ca2+ uptake into cells under nonsteady-state conditions in the presence or absence of Na+. Monensin, a Na+ ionophore, was able to elicit a modest increase in 45Ca2+ efflux, compared with controls. Studies of net 45Ca2+ flux, performed under near-steady-state conditions, showed that adrenaline caused net 45Ca2+ accumulation, whereas monensin caused net 45Ca2+ release. The effect of monensin required the presence of Na+ in the incubation medium. Both 1 mM-LaCl3 and 0.1 mM-D-600 prevented adrenaline-stimulated 45Ca2+ uptake into cells, but had no effect on monensin-induced changes. We conclude that (1) the rapid mobilization of Ca2+ by adrenergic agonists seen in rat parotid cells does not require a Na+out greater than Na+in gradient and (2) the nature of the monensin effect is quite different from the adrenergic-agonist-induced response.  相似文献   

17.
The three isozymes of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli were overproduced, purified, and characterized with respect to their requirement for metal cofactor. The isolated isozymes contained 0.2-0.3 mol of iron/mol of enzyme monomer, variable amounts of zinc, and traces of copper. Enzymatic activity of the native enzymes was stimulated 3-4-fold by the addition of Fe2+ ions to the reaction mixture and was eliminated by treatment of the enzymes with EDTA. The chelated enzymes were reactivated by a variety of divalent metal ions, including Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Mn2+, Ni2+, and Zn2+. The specific activities of the reactivated enzymes varied widely with the different metals as follows: Mn2+ greater than Cd2+, Fe2+ greater than Co2+ greater than Ni2+, Cu2+, Zn2+ much greater than Ca2+. Steady state kinetic analysis of the Mn2+, Fe2+, Co2+, and Zn2+ forms of the phenylalanine-sensitive isozyme (DAHPS(Phe)) revealed that metal variation significantly affected the apparent affinity for the substrate, erythrose 4-phosphate, but not for the second substrate, phosphoenolpyruvate, or for the feedback inhibitor, L-phenylalanine. The tetrameric DAHPS(Phe) exhibited positive homotropic cooperativity with respect to erythrose 4-phosphate, phophoenolpyruvate, and phenylalanine in the presence of all metals tested.  相似文献   

18.
The effects of adrenaline on 45Ca2+-exchange curves for isolated hepatocytes incubated under various steady-state conditions were investigated. Kinetic analysis showed that the simplest compartment configuration consistent with each set of data was a series configuration of a three-compartment closed system comprising compartment 1 (C1), the extracellular medium, and two kinetically distinct compartments of cellular exchangeable Ca2+, C2 and C3 (C1 = C2 = C3). Subcellular fractionation of hepatocytes labelled with 45Ca2+ at 0.1 mM-Ca2+ indicated that C3 includes exchangeable Ca2+ in the mitochondria and endoplasmic reticulum. The following results were obtained from experiments conducted at 37 degrees C at five different extracellular Ca2+ concentrations. For both untreated and adrenaline-treated cells, plots of the flux from C1 to C2 as a function of the extracellular Ca2+ concentration were best described by straight lines consistent with Ca2+ influx across the plasma membrane being a diffusion process. Adrenaline increased the value of the permeability constant for Ca2+ influx by 40%. For untreated cells, plots of the flux between C2 and C3 as a function of the concentrations of Ca2+ in these compartments approached a plateau at high Ca2+ concentrations. Adrenaline caused a 3-fold increase in the concentration of Ca2+ that gives half-maximal rate of Ca2+ transport from C2 to C3. At 1.3 mM extracellular Ca2+, a decrease in incubation temperature from 37 degrees C to 20 degrees C decreased the quantity of Ca2+ in C3 and the flux and fractional transfer rates for the transport of Ca2+ between C2 and C3. At 20 degrees C adrenaline increased the quantity of Ca2+ in C3 and the fractional transfer rates for the transfer of Ca2+ from C1 to C2, and from C2 to C3. At 37 degrees C and 2.4 mM extracellular Ca2+, antimycin A plus oligomycin decreased the quantity of Ca2+ in C3 and increased the fractional transfer rate for the transport of Ca2+ from C3 to C2. In the presence of antimycin A and oligomycin, adrenaline did not increase the quantity of Ca2+ in C2 or the flux and fractional transfer rate for the transport of Ca2+ from C1 to C2, whereas these parameters were increased in the absence of the inhibitors.  相似文献   

19.
The addition of nanomolar concentrations of free Fe2+, Mn2+, or Co2+ to rat liver plasma membranes resulted in an activation of ATP hydrolysis by these membranes which was not additive with the Ca2+-stimulated ATPase activity coupled to the Ca2+ pump. Detailed analysis showed that, if fact, (i) as for the stimulation of (Ca2+-Mg2+)-ATPase by Ca2+, activation of ATP hydrolysis by Fe2+, Mn3+, or Co2+ followed a cooperative mechanism involving two ions; (ii) two interacting sites for ATP were involved in the activation of both Fe2+- and Ca2+-stimulated ATPase activities; (iii) micromolar concentrations of magnesium caused the same dramatic inhibition of both activities; and (iv) the subcellular distribution of Fe2+-activated ATP hydrolysis activity corresponded to that of plasma membrane markers. This suggests that the (Ca2+-Mg2+)-ATPase might be stimulated not only by Ca2+, but also by Fe2+, Mn2+, or Co2+. However, interaction of (Ca2+-Mg2+)-ATPase with Fe2+, Mn2+, or Co2+ inhibited the Ca2+ pump activity. Furthermore, neither the formation of the phosphorylated intermediate of (Ca2+-Mg2+)-ATPase, nor ATP-dependent (59Fe) uptake could be detected in the presence of Fe2+ concentrations which stimulated ATP hydrolysis. We conclude that: (i) under the influence of certain metal ions, the Ca2+ pump in the liver plasma membrane may be switched to an uncoupled state which displays ATP hydrolysis activity, but does not insure ion transport; (ii) therefore the Ca2+ pump in liver plasma membranes specifically insures Ca2+ transport.  相似文献   

20.
The role of cyclic-adenosine monophosphate (cAMP) and calcium (Ca2+) in the metabolic responses to adenosine was studied in isolated hepatocytes from fed rats. In the presence of 1.2 mM Ca but not in the absence of Ca2+, adenosine stimulated ureagenesis without increasing cAMP. Adenosine inhibited the glucagon mediated increase in cAMP. Adenosine increased free cytoplasmic Ca2+ provided that cells were incubated in the presence of external Ca2+. In the absence of added Ca2+ adenosine did not stimulate ureagenesis or the movements of Ca2+. It is suggested that, in the liver cell, Ca2+ may be a second messenger for adenosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号