首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive oxygen species (ROS) fulfil many functions in plants. They have a signaling role in several physiological mechanisms, but they are also directly involved as substrates in important reactions, especially in the apoplast. Two ROS, superoxide and hydrogen peroxide, were shown to exhibit a typical accumulation pattern in the Arabidopsis root apex. While hydrogen peroxide is mainly present in the cell wall of fully elongated cells in the region of root hair formation, superoxide accumulation roughly coincides with the transition zone, between the meristem and the fast elongating zone. Developing lateral roots also exhibit a strong superoxide labeling with the same localization.Key Words: superoxide, hydrogen peroxide, cell elongation, transition zone, nitroblue tetrazoliumIn a recent work,1 we have shown that superoxide radical and hydrogen peroxide have different accumulation sites in Arabidopsis root tip. Hydrogen peroxide is mainly present in a region identified as “differentiation zone”, according to the nomenclature used by Scheres et al.2 This localization fits well with the role that was assigned to this ROS in the formation of root hairs.3 This hypothesis was strengthened by the fact that umbelliferone, which promotes the in vitro and in vivo formation of hydrogen peroxide by peroxidases, induces the formation and the elongation of root hairs. In contrast, potassium iodide, a H2O2 scavenger, prevents the formation of root hairs, but does not completely abolished their initiation.As for superoxide radical, it accumulates mainly in apoplast of cells ranging from the proximal part of root meristem to the point where cells initiate their fast elongation. This localization is in agreement with a role of superoxide in the cell elongation process.1 This conclusion can be refined, taking into account the work of Baluška and coll.4,5 Using various functional and structural criteria, these authors identified four distinct zones in the root apex of Arabidopsis. They introduced an additional zone, between the meristem and the fast elongating cells, named “transition zone”. This region comprises cells which do not divide any more and are preparing their elongation. A reappraisal of the localization of superoxide accumulation in the light of this classification could suggest that this ROS is actually mainly associated with this transition zone, rather than with the beginning of the elongation zone. Figure 1 shows an Arabidopsis root stained for the presence of superoxide with nitroblue tetrazolium. It appears that the strong superoxide staining ranges from about 80 to 250 µm away from the root tip. The respective sizes of the various zones somewhat differ from the sizes reported (in ref. 5). It is difficult to precisely determine the border between the meristem and the transition zone, which should be around 120 µm. The fast elongation zone begins at about 240 µm. Fast elongating cells exhibit only a slight superoxide staining in their cell wall. Therefore, it appears that superoxide accumulates mainly in the wall of cells preparing their rapid elongation. It has been reported that cells in the transition zone undergo several modifications to prepare their growth. This includes reactions leading to cell wall loosening.6,7 The presence of superoxide in the cell wall of those cells could participate in the onset of the loosening process, for example by interacting with peroxidases to produce hydroxyl radicals.8Open in a separate windowFigure 1Distribution of superoxide radical in the root of a 7-day old Arabidopsis seedling stained with nitroblue tetrazolium. Growth conditions and staining procedure were as described (in ref. 1). The scale indicates µm, starting from the root cap junction. The picture was taken with a MZ 16 Leica stereomicroscope. Arrowheads point to root hairs in formation. Black arrow, basal limit of meristem. White arrow, onset of the fast elongation zone.When roots get older, the intensity of superoxide staining in the main root tip decreases, while the apex of the newly formed lateral roots exhibits a stronger reaction (Fig. 2). This could be related to the important growth potential of young lateral roots. The emerging root primordium is usually clearly positive (Fig. 2A) and in a fully formed lateral root, superoxide staining is concentrated in a zone between the meristem and elongated cells, most likely corresponding to the transition zone (Fig. 2B). In conclusion, superoxide radical seems to accumulate in the wall of cells preparing their elongation in the transition zone of Arabidopsis root apex.Open in a separate windowFigure 2Detection of superoxide radical by nitroblue tetrazolium in a lateral root primordium marked by an arrow (A) and in a developing lateral root (B). mr, main root. Scale bar: 100 µm.  相似文献   

2.
Aminopeptidase M1 (APM1), a single copy gene in Arabidopsis thaliana, encodes a metallopeptidase originally identified via its affinity for, and hydrolysis of, the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). Mutations in this gene result in haploinsufficiency. Loss-of-function mutants show irregular, uncoordinated cell divisions throughout embryogenesis, affecting the shape and number of cotyledons and the hypophysis, and is seedling lethal at 5 d after germination due to root growth arrest. Quiescent center and cell cycle markers show no signals in apm1-1 knockdown mutants, and the ground tissue specifiers SHORTROOT and SCARECROW are misexpressed or mislocalized. apm1 mutants have multiple, fused cotyledons and hypocotyls with enlarged epidermal cells with cell adhesion defects. apm1 alleles show defects in gravitropism and auxin transport. Gravistimulation decreases APM1 expression in auxin-accumulating root epidermal cells, and auxin treatment increases expression in the stele. On sucrose gradients, APM1 occurs in unique light membrane fractions. APM1 localizes at the margins of Golgi cisternae, plasma membrane, select multivesicular bodies, tonoplast, dense intravacuolar bodies, and maturing metaxylem cells. APM1 associates with brefeldin A–sensitive endomembrane structures and the plasma membrane in cortical and epidermal cells. The auxin-related phenotypes and mislocalization of auxin efflux proteins in apm1 are consistent with biochemical interactions between APM1 and NPA.  相似文献   

3.
Aluminum (Al)-induced damage to leaves and roots of two Al-resistant (cv. Atlas 66, experimental line PT741) and two Al-sensitive (cv. Scout 66, cv. Katepwa) lines ofTriticum aestivum L. was estimated using the deposition of (1, 3)--glucans (callose) as a marker for injury. Two-day-old seedlings were grown for forty hours in nutrient solutions with or without added Al, and callose deposition was quantified by spectrofluorometry (0–1000 µM Al) and localized by fluorescence microscopy (0 and 400 µM Al). Results suggested that Al caused little damage to leaves. No callose was observed in leaves with up to 400 µM Al treatment. In contrast, root callose concentration increased with Al treatment, especially in the Al-sensitive lines. At 400 µM Al, root callose concentration of Al-sensitive Scout 66 was nearly four-fold that of Al-resistant Atlas 66. After Al treatment, large callose deposits were observed in the root cap, epidermis and outer cortex of root tips of Scout 66, but not Atlas 66. The identity of callose was confirmed by a reduced fluorescence in Al-treated roots: firstly, after adding an inhibitor of callose synthesis (2-deoxy-D-glucose) to the nutrient solution, and secondly, after incubating root sections with the callosedegrading enzyme -D-glucoside glucohydrolase [EC 3.2.1.21]. Root callose deposition may be a good marker for Al-induced injury due to its early detection by spectrofluorometry and its close association with stress perception.Abbreviations DDG 2-deoxy-D-glucose - PAS periodic acid - Schiffs reagent - PE pachyman equivalents  相似文献   

4.
Apical root meristems and segments of root elongation zone were sampled from 4- to 5-day-old Zea mays L. seedlings. The vacuolar ATPase and pyrophosphatase, the tonoplast marker enzymes, and the tonoplast -, -, and -aquaporins were visualized by means of indirect immunofluorescent microscopy with the use of the respective antibodies. Following cell plasmolysis (700 mM mannitol, 2.5 h), the vacuolar ATPase and pyrophosphatase were detected in cell wall pores where plasmodesmata remained detached from the plasmolyzed protoplasts. This finding provides further evidence for existence of the vacuolar symplast in the elongation zone of maize root, which may ensure intercellular continuity of plant tissues. The pulsed NMR method was used to study the self-diffusion of water molecules. The diffusive decay in the root elongation zone was nonexponential, and it was transformed to three exponential terms with characteristic coefficients of self-diffusion; two of these coefficients (D 2 and D 3) characterize the water self-diffusion in the cytoplasmic and vacuolar symplasts of root, respectively. The root apical meristem was also investigated with NMR technique by virtue of paramagnetic doping of the apoplast. This approach allowed selective studying of water diffusion within the symplast compartments. Partial dehydration with PEG-6000, 12 and 20%, for 2.5 h and chemical stressors (ABA and salicylic acid, 0.1 mM, 24 h) were applied to modify water permeability of plasmodesmata and tonoplast aquaporins. The transcellular water permeability increased in the root meristem under the action of all stress factors. In the root elongation zone exposed to partial dehydration, the water exchange in the apoplast became the dominant component. Other stress factors affected water relations in different manners. ABA elevated the water permeability of the vacuolar symplast, in contrast to salicylic acid that decreased water conductance of both the cytoplasmic and vacuolar symplasts.  相似文献   

5.
In the growing apex of Arabidopsis thaliana primary roots, cells proceed through four distinct phases of cellular activities. These zones and their boundaries can be well defined based on their characteristic cellular activities. The meristematic zone comprises, and is limited to, all cells that undergo mitotic divisions. Detailed in vivo analysis of transgenic lines reveals that, in the Columbia-0 ecotype, the meristem stretches up to 200 µm away from the junction between root and root cap (RCJ). In the transition zone, 200 to about 520 µm away from the RCJ, cells undergo physiological changes as they prepare for their fast elongation. Upon entering the transition zone, they progressively develop a central vacuole, polarize the cytoskeleton and remodel their cell walls. Cells grow slowly during this transition: it takes ten hours to triplicate cell length from 8.5 to about 35 µm in the trichoblast cell files. In the fast elongation zone, which covers the zone from 520 to about 850 µm from the RCJ, cell length quadruplicates to about 140 µm in only two hours. This is accompanied by drastic and specific cell wall alterations. Finally, root hairs fully develop in the growth terminating zone, where root cells undergo a minor elongation to reach their mature lengths.Key words: Arabidopsis, cytoskeleton, development, differentiation zone, elongation zone, growth, growth terminating zone, meristem, root apex, transition zone  相似文献   

6.
We examined the effects of CD40 activation with dexamethasone (Dex) or 60Co--irradiation on the growth of malignant B cells in vitro, using the human multiple myeloma (MM) cell line, XG2, and the B lymphoma Daudi cell line as models. Both lines are resistant to Dex and irradiation; 10–7M Dex or 10 Gy of -irradiation induced only minimal growth arrest and apoptosis of the cells. Treatment of the cells with the agonistic anti-CD40 monoclonal antibody 5C11 partially inhibited the proliferation of the Daudi cells; XG2 underwent apoptosis. XG2 is an Interleukin-6 (IL-6)-dependent myeloma cell line and CD40 activation blocked XG2 in the G1 phase of the cell cycle, in a manner similar to the effect of IL-6 deprivation. Daudi was blocked in the G2/M phase after treatment with the agonistic CD40 mAb 5C11. Furthermore, the activation of CD40 on Daudi and XG2 enhanced their sensitivity to dexamethasone-and -irradiation -induced growth arrest and apoptosis. CD40 activation stimulated both anti-apoptotic Bcl-XL and pro-apoptotic Bax mRNA synthesis in the Daudi cell line; CD40 activation increased the Bax mRNA level but had no effect on the Bcl-XL mRNA level in the XG2 cell line. Apoptosis in both cell lines was associated with an increasing ratio of Bax-to-Bcl-XL both in mRNA and in protein levels. It is concluded that use of the anti-CD40 mAb 5C11 either by itself or in combination with chemotherapy and/or radiotherapy may have significant therapeutic potential.Z-H. Zhou and Qin Shi are equally contributed to this article.  相似文献   

7.
 A Nicotiana plumbaginifolia plant (apm5r) resistant to amiprophos-methyl (APM), a phosphoro-amide herbicide, was isolated from protoplasts prepared from leaves of haploid plants. Genetic analysis revealed that the resistance is coded for by a dominant nuclear mutation and is associated with the increased stability of cortical microtubules. Two-dimensional polyacrylamide-gel electrophoresis, combined with immunoblotting using anti-tubulin monoclonal antibodies, showed that part of the β-tubulin in the resistant plant possessed lower isoelectric points than the β-tubulin of susceptible wild-type plants. These results provide evidence that the resistance to APM is associated with a mutation in a β-tubulin gene. The APM-resistant line showed cross-resistance to trifluralin, a dinitroaniline herbicide, suggesting a common mechanism of resistance between these two classes of herbicides. Received: 26 January 1997 / Accepted: 17 February 1998  相似文献   

8.
The dominant-negative female-sterile KavarD mutations and their revertant kavarr alleles identify the Tubulin67C gene of Drosophila melanogaster, which codes for the maternally provided -tubulin4 isoform. The mutations result in the formation of monopolar, collapsed spindles (each with two nearby centrosomes, a tassel of microtubules and overcondensed chromosomes), thus revealing a novel function for -tubulin4 in spindle maintenance and elongation. Molecular features of the two KavarD alleles and a kavarnull allele are described and models for their actions are discussed.  相似文献   

9.
Summary Wounds in pea roots can cause the cortical cells surrounding the wound to change their direction of elongation and division planes in order to replace the removed tissue. These changes in growth polarity are preceded by a re-orientation of microtubules in the affected cells. In an approach to understand the control of this process it was investigated whether or not the plant hormone ethylene plays a role in the re-orientation of microtubules and growth polarity. Our results show that treating pea roots with an inhibitor of ethylene synthesis, L--(2-aminoethyoxyvinyl)-glycine hydrochloride (AVG), did not affect wound-induced microtubule re-orientation. However, the effect of AVG on ethylene synthesis in pea roots was confirmed by its stimulation of root elongation. Therefore we conclude that increased ethylene production, which has been observed previously in wounded tissues, is unlikely to be a control factor in microtubule re-orientation in this system.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG L--(2-aminoethyoxyvinyl)-glycine hydrochloride - MSB microtubule stabilizing buffer  相似文献   

10.
The validation of the urinary excretion of N-methylhistidine (N-MH) by quail as an index of the muscle protein turnover rate was tested using the criterion of the rate of recovery of radioactivity in urine following an intraperitoneal dose of l-[3-14C]methylhistidine. A genetic study on muscle protein turnover in quail was conducted using three genetically diverse lines (LL, large body size; SS, small body size; RR, random-bred control line) selected for body size. When l-[3-14C]methylhistidine was administered to 20-week-old male and female coturnix quail by direct intraperitoneal injection, approximately 90% of the l-[3-14C]methylhistidine was recovered by 96 hr postinjection. Recoveries were low in the egg and muscle. These results show that N-MH released from myofibrillar protein is not reutilized and the excretion of N-MH is a satisfactory index of muscle protein breakdown. In all lines, the amount of urinary N-MH excretion and fractional synthesis (Ks) and degradation (Kd) rates at the high growing period were higher than those at the low growing period. The Ks and Kd are significantly different among selected lines at both 3 and 6 weeks of age. At 3 weeks of age, the fractional rate of synthesis of the LL line (13.2%/day) was higher than that of the RR line (11.5%/day), whereas the SS (8.1%/day) was lower than that of the RR line (11.5%/day). The fractional rates of degradation of both the LL line (4.1%/day) and the SS line (5.6%/day) were lower than that of the RR line (7.0%/day) at 3 weeks of age. From these results, it was recognized that selection for body size gave rise to the changes in the muscle protein turnover rate.  相似文献   

11.

Background

We investigated interacting effects of matric potential and soil strength on root elongation of maize and lupin, and relations between root elongation rates and the length of bare (hairless) root apex.

Methods

Root elongation rates and the length of bare root apex were determined for maize and lupin seedlings in sandy loam soil of various matric potentials (?0.01 to ?1.6 MPa) and bulk densities (0.9 to 1.5 Mg m?3).

Results

Root elongation rates slowed with both decreasing matric potential and increasing penetrometer resistance. Root elongation of maize slowed to 10 % of the unimpeded rate when penetrometer resistance increased to 2 MPa, whereas lupin elongated at about 40 % of the unimpeded rate. Maize root elongation rate was more sensitive to changes in matric potential in loosely packed soil (penetrometer resistances <1 MPa) than lupin. Despite these differing responses, root elongation rate of both species was linearly correlated with length of the bare root apex (r2 0.69 to 0.97).

Conclusion

Maize root elongation was more sensitive to changes in matric potential and mechanical impedance than lupin. Robust linear relationships between elongation rate and length of bare apex suggest good potential for estimating root elongation rates for excavated roots.  相似文献   

12.
Summary The effect of exogenous applications of gibberellins (GAs) or the growth retardant -chloroethyltrimethylammonium chloride (CCC) on root nodule formation and activity (C2H2-reduction) in soya was studied. Daily foliar application of GA3 (2.89×10–6 M) delayed the formation of nodule initials and reduced the numbers mass nodule–1 and specific activity of nodules by 43%, 31% and 47% respectively, without affecting plant growth. Similar effects on nodulation were produced by foliar application of GA4 (3.01×10–5 M) or GA7 (3.03×10–5 M), or by the addition of GA3 (2.89×10–6 M) to the rooting medium. GA effectiveness in reducing nodule numbers was decreased by delaying its application until after the initial infection process had occurred, but the nodules formed were smaller and less active than those of the untreated control plants. The GA effect on nodulation and nodule activity was not associated with alterations in root exudate or due to a direct inhibitory effect of the hormone on the nitrogenase system. When the endogenous root content of GA-like substances was reduced (86% decrease) by foliar application of CCC (6.30×10–5 M), nodule numbers were increased by 56%, but nodule size and total nodule activity were similar to those of control plants. The GA and CCC treatments had no effect on rhizobial growth in liquid culture nor on root colonisation by rhizobia.The results suggest that the endogenous content of root GA may have a regulatory role in both the infection process and in subsequent nodule morphogenesis, thus controlling both the number and effectiveness of the root nodules formed.  相似文献   

13.
A cDNA clone (pBLT63) encoding a protein synthesis elongation factor 1 (EF-1) was isolated from a low-temperature winter barley shoot meristem library by differential screening. The nucleotide sequence of the coding region of the low-temperature-induced barley gene shows very high homology with two EF-1 plant genes from tomato and Arabidopsis. The barley genome contains an EF-1 gene family situated on the short arm of chromosome 2 and the long arm of chromosome 5. The nucleotide sequence data reported will appear in the EMBL, GenBank and DDBJ Nucleotide Sequence Databases under the accession number Z23130.  相似文献   

14.
Summary Cells of carrot calli (Daucus carota L.) grown on clinostats (simulated weightlessness) exhibit increases in nucleolar number and volume. In clinostat-grown whole barley plants (Hordeum vulgare L. cv. Steptoe), nucleoli in 70% of root meristem and root cortical cells in the 1 mm root apex exhibit multiple nodulations after one day of growth. The nucleolar nodules (1.1 m mean diameter) are densely and finely fibrous, distinctly different from the nucleolus in which the content is so compact that the granular component is masked. Control nucleoli (from vertically rotated and stationary seedlings) rarely exhibit nodule-like protrusions, are not compact, and contain a well defined granular component. Proteins that are heat soluble, characteristic of many stress responses, rapidly increase in barley grown on clinostats. Barley growth on clinostats is slowly and steadily inhibited. There is no difference between vertically rotated and stationary controls for any of the parameters measured, indicating that clinostat motion per se does not affect significantly barley development. The evidence taken together suggests that barley plants germinated and grown on clinostats are stressed, the effects of which are expressed sequentially by alteration of nucleolar morphology, increased production of heat-soluble proteins, and decreased plant growth. Similar stress-related changes may be expected to occur in plants subjected to weightlessness during space flight. It is therefore of interest that nucleoli in wheat roots (Triticum aestivum L. cv. Broom) obtained from the space flight IML-1 mission show irregularity that is not observed in any of the ground controls for the flight experiment.Abbreviations Act D actinomycin D - C clinostat rotation - EM electron microscopy - LM light microscopy - R vertical rotation - rDNA ribosomal DNA - S stationary  相似文献   

15.
A cDNA containing the entire coding region for the iron storage protein ferritin has been isolated from the French bean plant,Phaseolus vulgaris L. cv. Tendergreen. Ferritin protein was purified from young leaves and shoot meristem tissue and used to raise antisera in mice. A gt11 cDNA library was constructed from seed-derived poly(A)+ RNA, and screened with the mouse anti-ferritin serum. A 1.2 kb immunopositive phage DNA insert was isolated and sequenced. The derived amino acid sequence shows substantial similarity with other ferritin sequences. The 5 untranslated region contains two out-of-frame AUG codons, a region of extreme pyrimidine composition bias and potentially stable secondary structure.  相似文献   

16.
The first step in the gravitropic reaction chain, i.e. perception, is known to occur in the statenchyma of the root cap. Because of the importance of the root tip in graviperception, a procedure has been developed to isolate root tips from garden cress (Lepidium sativum L.). The root tip fraction contains the tissues of the root cap plus the lower half of the meristem zone, but is clearly separated from the tissues of the elongation zone, the zone of gravitropic response. Membranes from the root tip and root base fractions have been centrifuged on sucrose density gradients and the marker enzyme profiles analyzed. These results show that the marker enzyme profiles for vacuoles, dictyosomes, mitochondria, and plasma membranes are similar in the root tip or root base fractions. The endoplasmic reticulum (ER) has a shoulder of cytochrome c reductase activity at a density of 1.16 g cm-3 which is distinct from the other enzyme activities and is only observed in root tip preparations. The specific enzyme activity for ER, cytochrome c reductase, was enriched in root tip membranes 1.7 fold. This latter increase is interpreted as at least in part an increased ER content in the root tip.Abbreviations ASG 6-acyl-steryl glucoside - ER endoplasmic reticulum - IDP inosine-5-diphosphate - INT 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyltetrazolium chloride - PM plasma membrane - SG steryl glucoside  相似文献   

17.
18.
As part of our studies on respiration systems in root zones of the horse bean (Vicia faba L., cv. Chlumecký) the influence of quininehydrochloride and potassium cyanide on respiration was followed. The inhibition of the oxygen uptake by quininehydrochloride was highest in the elongation zone and lowest in the meristematic zone. Thes shows that the flavine enzyme content is lowest in the meristem, highest in the elongation zone. The inhibition of Fe- and Cu-enzymes by KCN increases from the root tip towards the older parts of the root, but is lower than the inhibition by quininehydrochloride. The difference between the intensity of action of both, applied separately, and of the combined effect of both if compared with the action of cyanide alone, is highest in the elongation zone; this shows that relatively higher amounts of non-metallic flavine enzymes participate in this zone. Their relation to the pentose phosphate cycle is discussed.  相似文献   

19.
We have carried out a comparative functional analysis of the rat TGF-1 and Xenopus laevis TGF-5 promoters across several mammalian and amphibian cell lines. Progressive deletion constructs of both the promoters have been made using a PCR based approach and the basal promoter activities studied in Xenopus tadpole cell line (XTC), Xenopus adult kidney fibroblast cell line (A6), human hepatoma cell line (HepG2), normal rat kidney cell line (NRK), and Chinese hamster ovary cell line (CHO). Data suggests that the basal promoter activity of TGF-1 is low as compared to TGF-5 promoter in XTC cells but comparable in A6 cells, while TGF-5 promoter shows nearly negligible activity as compared to TGF-5 promoter in all the tested mammalian cell lines. Moreover, TGF-5 promoter is found to be repressed in XTC cells on treatment with TGF-5 protein. Thus, the regulation of TGF-1 and TGF-5 promoters is distinct in amphibian and mammalian species. We therefore suggest that contrary to the suggested functional equivalence of TGF-1 and TGF-5 proteins, TGF-1 and TGF-5 genes have distinct functions in their respective species. Present address (Kartiki V. Desai): Laboratory of Cell Regulation and Carcinogenesis, NCI, NIH Bldg 41, Room C619, Bethesda, MD 20892, USA  相似文献   

20.
Summary In this study, we have used an 1-adrenergic receptor photoaffinity ligand, 2-[4-(4-azido-3-iodo-benzoyl)-piperazin-1-yl]-4-amino-6, 7-dimethoxyquinazoline (125I-APD), to label covalently the 1-adrenergic receptor in a smooth muscle cell line. Our results indicate that in the absence of light, (125I)APD binds reversibly to a site in the DDT1 MF-2 cell membranes having pharmacological characteristics of an 1-adrenergic receptor. Following incorporation of (125I)ADP into partially purified membranes a single labeled band of protein with a Mr of 81 000 was visualized by autoradiography following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Incorporation of (125I)-APD into this band was affected by adrenergic agonists and antagonists in a manner consistent with an 1-adrenergic interaction. Prazosin (1-selective) blocked incorporation of the label into the Mr = 81 000 protein while yohimbine (2-selective) did not. Of the adrenergic agonists, (–)-epinephrine and (–)-norepinephrine but not (–)-isoproterenol blocked labeling of the Mr – 81 000 protein. We conclude that the ligand binding site of the DDT1 MF-2 cell 1-adrenergic receptor resides in a Mr = 81 000 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号