首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of microtubules was studied during fertilization of the rabbit oocyte by immunofluorescence microscopy after staining with an anti-alpha-tubulin antibody. In ovulated oocytes, microtubules were found exclusively in the meiotic spindle. At fertilization, the paternal centrosome generated sperm astral microtubules. During pronuclear development, the sperm aster increased in size, and microtubules extended from the male pronucleus to the egg center and towards the female pronucleus. These observations indicate that microtubules emanating from the sperm centrosome were involved in the movements leading to the union of the male and female pronuclei. At late pronuclear stage, microtubules surrounded the adjacent pronuclei. The mitotic spindle that emerged from the perinuclear microtubules contained broad anastral poles.  相似文献   

2.
The events of mammalian fertilization overlap with the completion of meiosis and first mitosis; the pronuclei never fuse, instead the parental genomes first intermix at the mitotic spindle equator at metaphase. Since kinetochores are essential for the attachment of chromosomes to spindle microtubules, this study explores their appearance and behavior in mouse oocytes, zygotes and embryos undergoing the completion of meiosis, fertilization and mitoses. Kinetochores are traced with immunofluorescence microscopy using autoimmune sera from patients with CREST (CREST = calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, telangiectasia) scleroderma. These sera cross-react with the 17 kDa centromere protein (CENP-A) and the 80 kDa centromere protein (CENP-B) found at the kinetochores in human cell cultures. The unfertilized oocyte is ovulated arrested at second meiotic metaphase and kinetochores are detectable as paired structures aligned at the spindle equator. At meiotic anaphase, the kinetochores separate and remain aligned at the distal sides of the chromosomes until telophase, when their alignment perpendicular to the spindle axis is lost. The female pronucleus and the second polar body nucleus each receive a detectable complement of kinetochores. Mature sperm have neither detectable centrosomes nor detectable kinetochores, and shortly after sperm incorporation kinetochores become detectable in the decondensing male pronucleus. In pronuclei, the kinetochores are initially distributed randomly and later found in apposition with nucleoli. At mitosis, the kinetochores behave in a pattern similar to that observed at meiosis or mitosis in somatic cells: irregular distribution at prophase, alignment at metaphase, separation at anaphase and redistribution at telophase. They are also detectable in later stage embryos. Colcemid treatment disrupts the meiotic spindle and results in the dispersion of the meiotic chromosomes along the oocyte cortex; the chromosomes remain condensed with detectable kinetochores. Fertilization of Colcemid-treated oocytes results in the incorporation of a sperm which is unable to decondense into a male pronucleus. Remarkably kinetochores become detectable at 5 h post-insemination, suggesting that the emergence of the paternal kinetochores is not strictly dependent on male pronuclear decondensation.  相似文献   

3.
In unfertilized eggs from vertebrates, the cell cycle is arrested in metaphase of the second meiotic division (metaphase II) until fertilization or activation. Maintenance of the long-term meiotic metaphase arrest requires mechanisms preventing the destruction of the maturation promoting factor (MPF) and the migration of the chromosomes. In frog oocytes, arrest in metaphase II (M II) is achieved by cytostatic factor (CSF) that stabilizes MPF, a heterodimer formed of cdc2 kinase and cyclin. At the metaphase/anaphase transition, a rapid proteolysis of cyclin is associated with MPF inactivation. In Drosophila, oocytes are arrested in metaphase I (M I); however, only mechanical forces generated by the chiasmata seem to prevent chromosome separation. Thus, entirely different mechanisms may be involved in the meiotic arrests in various species. We report here that in mouse oocytes a CSF-like activity is involved in the M II arrest (as observed in hybrids composed of fragments of metaphase II-arrested oocytes and activated mitotic mouse oocytes) and that the high activity of MPF is maintained through a continuous equilibrium between cyclin B synthesis and degradation. In addition, the presence of an intact metaphase spindle is required for cyclin B degradation. Finally, MPF activity is preferentially associated with the spindle after bisection of the oocyte. Taken together, these observations suggest that the mechanism maintaining the metaphase arrest in mouse oocytes involves an equilibrium between cyclin synthesis and degradation, probably controlled by CSF, and which is also dependent upon the three-dimensional organization of the spindle.  相似文献   

4.
We used okadaic acid (OA), a potent inhibitor of protein phosphatases 1 and 2A, to study the regulatory effects of protein phosphatases on mitogen-activated protein (MAP) kinase phosphorylation, morphological changes in the nucleus, and microtubule assembly during pig oocyte maturation and fertilization in vitro. When germinal vesicle (GV) stage oocytes were exposed to OA, MAP kinase phosphorylation was greatly accelerated, being fully activated at 10 min. However, MAP kinase was dephosphorylated by long-term (>20 h) exposure to OA. Correspondingly, premature chromosome condensation and GV breakdown were accelerated, whereas meiotic spindle assembly and meiotic progression beyond metaphase I stage were inhibited. OA also quickly reversed the inhibitory effects of butyrolactone I, a specific inhibitor of maturation-promoting factor (MPF), on MAP kinase phosphorylation and meiosis resumption. Treatment of metaphase II oocytes triggered metaphase II spindle elongation and disassembly as well as chromosome alignment disruption. OA treatment of fertilized eggs resulted in prompt phosphorylation of MAP kinase, disassembly of microtubules around the pronuclear area, chromatin condensation, and pronuclear membrane breakdown, but inhibited further cleavage. Our results suggest that inhibition of protein phosphatases promptly phosphorylates MAP kinase, induces premature chromosome condensation and meiosis resumption as well as pronucleus breakdown, but inhibits spindle organization and suppresses microtubule assembly by sperm centrosomes in pig oocytes and fertilized eggs.  相似文献   

5.
In metaphase II arrested rat oocytes (M il), microtubles were found in the taper-shaped meiotic spindle and in the cytoplasm as asters and free microtubules. Whereas spindle microtubules were acetylated, those located in the cytoplasm were not. Cytoplasmic microtubules were also labile as assessed by mild cooling. In contast to mouse oocytes, rat microtubule organizing centers (MTOCs) did not react with MPM-2 antibody by immunofluorescence despite the fact that this antibody reacts with several proteins as shown by immunoblot. However, cytoplasmic MTOCs in M II-arrested rat oocytes could be detected by their nucleating capacity in the presence of taxol, a drug that induced the formation of numerous cytoplasmic asters. In addition, taxol caused a change in the spindle shape and the formation of astral microtubules at the spindle poles. Meiotic spindles (as well as chromosomes devoid of microtubules after nocodazoletreatment) were overlaid by an actin-rich domain. Spontaneous abortive activation led to the extrusion of the second polar body followed by another metaphase arrest— metaphase III; however, normal spindles did not form and dispersed chromosomes surrounded by microtubles were observed. Electron microscopic studies confirmed these observations and revealed that the kinetochores are located deep within the chromosomes in contrast to mouse kinetochores, and this might be responsible for the absence of a metaphase III spindle in the rat oocyte. Induced activation caused transition to interphase with the formation of a characteristic microtubule network. This study shows that there are several significant differences in the cytoskeletal organization of rat and mouse oocytes. © 1993 Wiley-Liss, Inc.  相似文献   

6.
The onset of pronucleus formation and DNA synthesis in porcine oocytes following the injection of porcine or murine sperm was determined in order to obtain insights into species-specific paternal factors that contribute to fertilisation. Similar frequencies of oocytes with female pronuclei were observed after injection with porcine sperm or with murine sperm. In contrast, male pronuclei formed 8-9 h following the injection of porcine sperm, and 6-8 h following the injection of murine sperm. After pronucleus formation maternally derived microtubules were assembled and appeared to move both male and female pronuclei to the oocyte centre. A few porcine oocytes entered metaphase 22 h after the injection of murine sperm, but normal cell division was not observed. The mean time of onset of S-phase in male pronuclei was 9.7 h following porcine sperm injection and 7.4 h following mouse sperm injection. Ultrastructural observation revealed that male pronuclei derived from murine sperm in porcine oocytes are morphologically similar to normal male pronuclei in porcine zygotes. These results suggest that species-specific paternal factors influence the onset of pronucleus formation and DNA synthesis. However, normal nuclear cytoplasmic interactions were observed in porcine S-phase oocytes following murine sperm injection.  相似文献   

7.
BubR1 (Bub1-related kinase or MAD3/Bub1b) is an essential component of the spindle assembly checkpoint (SAC) and plays an important role in kinetochore localization of other spindle checkpoint proteins in mitosis. But its roles in mammalian oocyte meiosis are unclear. In the present study, we examined the expression, localization and function of BubR1 during mouse oocyte meiotic maturation. The expression level of BubR1 increased progressively from germinal vesicle to metaphase II stages. Immunofluorescent analysis showed that BubR1 localized to kinetochores from the germinal vesicle breakdown to the prometaphase I stages, co-localizing with polo-like kinase 1, while it disappeared from the kinetochores at the metaphase I stage. Spindle disruption by nocodazole treatment caused relocation of BubR1 to kinetochores at metaphase I, anaphase I and metaphase II stages; spindle microtubules were disrupted by low temperature treatment in the BubR1-depleted oocytes in meiosis I, suggesting that BubR1 monitors kinetochore-microtubule (K-MT) attachments. Over-expression of exogenous BubR1 arrested oocyte meiosis maturation at the M I stage or earlier; in contrast, dominant-negative BubR1 and BubR1 depletion accelerated meiotic progression. In the BubR1-depleted oocytes, higher percentage of chromosome misalignment was observed and more oocytes overrode the M I stage arrest induced by low concentration of nocodazole. Our data suggest that BubR1 is a spindle assembly checkpoint protein regulating meiotic progression of oocytes.  相似文献   

8.
In order to study the effects of ubiquitin-proteasome pathway (UPP) on mouse oocyte meiosis and cleavage, oocytes undergoing maturation and parthenogenetic activation and 1-cell embryos were treated with lactacystin, a specific inhibitor of proteasome. The results indicated that the rate of GVBD was not influenced by the treatment, but polar body extrusion, parthenogenesis and first cleavage were inhibited. Immunofluorescent staining using anti β-tubulin antibody indicated that the continuous treatment of lactacystin from GV stage disorganized microtubules and spindle assembly. When metaphase stage oocytes were treated with the drug, the already formed spindle structure was not affected, but the oocytes were arrested at metaphases. The 1-cell embryos were arrested at interphase or metaphase of first mitosis when they were incubated in the drug. Proteasome regulatory subunit PA700 was located in the spindle region, as indicated by immunofluorescence. These results suggest that UPP has effects on the process of oocyte meiosis and early cleavage in many aspects, including normal organization of spindle at prophase and segregation of chromosomes at anaphase for normal meiosis.  相似文献   

9.
Many studies have shown that the ubiq-uitin-proteasome pathway (UPP) for the degradation of short-lived proteins plays a key role in regulating cell cycle progression[1—3]. At least two distinct prote-olytic pathways are required for cell cycle process. The first pathway promotes transition from G1 to S phase, and the second initiates the onset of anaphase and exit from mitosis. The inhibition of UPP will re-sult in the blockage of cell cycle process. The knowl-edge of the role of UPP in…  相似文献   

10.
alpha-Tubulin in the microtubules of mouse oocytes and embryos is acetylated in a specific spatial and temporal sequence. In the unfertilized oocyte, a monoclonal antibody to the acetylated form of alpha-tubulin is bound predominantly at the poles of the arrested metaphase meiotic spindle. The labeling intensity of the spindle microtubules is weaker as observed by immunofluorescence using oocytes double-labeled for total tubulin and acetylated alpha-tubulin, and as measured by immuno high-voltage electron microscopy (immunoHVEM) with colloidal gold; cytasters are not acetylated. At meiotic anaphase, the spindle becomes labeled, and by telophase and during second polar body formation only the meiotic midbody is acetylated. The sperm axoneme retains its acetylation after incorporation though the interphase microtubules are not detected. First mitosis follows a pattern similar to that observed at the second meiosis and during interphase only the mitotic midbodies are acetylated. After treatment with cold, colcemid, or griseofulvin, the remaining stable microtubules are acetylated, but immunoHVEM observations suggest that these fibers might not have been acetylated prior to microtubule disruption. Taxol stabilization does not alter acetylation patterns. Acetylated microtubules are not necessarily old microtubules since acetylated fibers are observed at 30 sec after cold recovery. These results show the presence of acetylated microtubules during meiosis and mitosis and demonstrate a cell-cycle-specific pattern of acetylation, with acetylated microtubules found at the centrosomes at metaphase, an increase in spindle labeling at anaphase, and the selective deacetylation of all but midbody microtubules at telophase.  相似文献   

11.
Zona-free oocytes of the mouse were inseminated at prometaphase I or metaphase I of meiotic maturation in vitro, and the behavior of the sperm nuclei within the oocyte cytoplasm was examined. If the oocytes were penetrated by up to three sperm, maturation continued during subsequent incubation and became arrested at metaphase II. Meanwhile, each sperm nucleus underwent the following changes. First, the chromatin became slightly dispersed. By 6 h after insemination, this dispersed chromatin had become coalesced into a small mass, from which short chromosomal arms later became projected. Between 12 and 18 h after insemination, each mass of chromatin became resolved into 20 discrete metaphase chromosomes. In contrast, if oocytes were penetrated by four to six sperm, oocyte meiosis was arrested at metaphase I, and each sperm nucleus was transformed into a small mass of chromatin rather than into metaphase chromosomes. If oocytes were penetrated by more than six sperm, the maternal chromosomes became either decondensed or pycnotic, and the sperm nuclei were transformed into larger masses of chromatin. As control experiments, immature and fully mature metaphase II oocytes were inseminated. In the immature oocytes, which were kept immature by exposure to dibutyryl cyclic AMP, no morphological changes in the sperm nucleus were observed. On the other hand, in the fully mature oocytes, which were activated by sperm penetration, the sperm nucleus was transformed into the male pronucleus. Therefore, the cytoplasm of the maturing oocyte develops an activity that can transform the highly condensed chromatin of the sperm into metaphase chromosomes. However, the capacity of an oocyte is limited, such that it can transform a maximum of three sperm nuclei into metaphase chromosomes. Furthermore, the presence of more than six sperm causes a loss of the ability of the oocyte to maintain the maternal chromosomes in a metaphase state.  相似文献   

12.
We show that in contrast to metaphase II oocytes, metaphase I oocytes cannot be activated by fusion with the zygote. Fusion of metaphase I oocytes with G2 zygotes was followed by premature chromosome condensation, with 60% of the hybrids becoming arrested at metaphase I, the remainder progressing and arresting at metaphase II. Hybrids of metaphase I oocytes and M-phase zygotes underwent accelerated maturation, but all arrested at metaphase II. In both cases the arrest could be overcome by treatment with the parthenogenetic activators ethanol and cycloheximide. We discuss these findings in relation to the possibility that the metaphase I oocyte contains cytostatic factor activity that is activated by its zygotic partner. Alternatively, the G2 zygote may provide an inhibitor of anaphase, normally never present in the metaphase I oocyte and which is absent from the M-phase zygote.  相似文献   

13.
Chromatin and microtubule organisation was determined in maturing and activated porcine oocytes following intracytoplasmic sperm injection in order to obtain insights into the nature of sperm chromatin decondensation and microtubule nucleation activity. Sperm chromatin was slightly decondensed at 8 h following injection into germinal vesicle stage oocytes. Sperm-derived microtubules were not seen in these oocytes. Following injection into metaphase I (MI)-stage oocytes, sperm chromatin went to metaphase in most cases. A meiotic-like spindle was seen in the sperm metaphase chromatin. In a few MI-stage oocytes, sperm chromatin decondensed at 8 h after injection, and a small sperm aster was seen. Sperm injection into oocytes at 5 h following activation failed to yield pronuclear formation. Maternally derived microtubules were organised near the female chromatin in these oocytes, and seemed to move condensed male chromatin closer to the female pronucleus. At 18 h after sperm injection into pre-activated oocytes, a condensed sperm nucleus was located in close proximity to the female pronucleus. These results suggest that the sperm nuclear decondensing activity and microtubule nucleation abilities of the male centrosome are cell cycle dependent. In the absence of a functional male centrosome, microtubules of female origin take over the role of microtubule nucleation for nuclear movement.  相似文献   

14.
Cell fusions have been used to determine the biological activity of the MPF complex in murine oocytes during their progression through anaphase and telophase to metaphase II. Oocytes (1) at metaphase I, (2) during the anaphase-telophase transition, or (3) at metaphase II were fused to germinal vesicle-staged (immature) oocytes. The hybrids were cultured for 1 h in the presence of db cAMP before fixation and nuclear evaluation. Metaphase I oocytes invariably induced germinal vesicle breakdown (GVBD) in the immature partner. By contrast, anaphase/telophase oocytes never induced GVBD in immature oocytes. The capacity to induce GVBD reappears after the formation of the second metaphase plate. In a second study, histone H1 kinase activity was measured during mouse oocyte maturation in single oocytes. H1 kinase activity was low in GV oocytes, increased sharply at MI, declined during anaphase and telophase and increased again at MII. After egg activation, H1 kinase activity was reduced to basal levels. These results provide direct evidence that a drop in activity of MPF in murine oocytes occurs concomitantly with the exit from metaphase I; MPF activity remains low until the cell re-enters metaphase.  相似文献   

15.
Polar body formation in oocytes is an extreme form of asymmetric cell division, but what regulates the asymmetric spindle positioning and cytokinesis is poorly understood. During mouse oocyte maturation, the metaphase I spindle forms at the center but then moves to the cortex prior to anaphase I and first polar body emission. We show here that treating denuded mouse oocytes with brefeldin A, an inhibitor of Golgi-based membrane fusion, abolished the asymmetric positioning of the metaphase I spindle and resulted in the formation of two half-size metaphase II eggs, instead of a full-sized egg and a polar body. The normal metaphase II spindle is similarly asymmetrically positioned in the mature egg, where the spindle lies with its axis parallel to the cortex but becomes perpendicular before anaphase II and emission of the second polar body. When ovulated eggs were activated with strontium in the presence of brefeldin A, the metaphase II spindle failed to assume perpendicular position, and the chromosomes separated without the extrusion of the second polar body. Remarkably, symmetric cytokinesis began following a 3 h delay, forming two half-size eggs each containing a pronucleus. BFA-sensitive intracellular vesicular transport is therefore required for spindle positioning in both MI and MII.  相似文献   

16.
The kinetics of spindle and chromosomes during bovine oocyte meiosis from meiosis I to meiosis III is described. The results of this study showed that (1) oocytes began to extrude the first polar body (Pb1) at the early anaphase I stage and the Pb1 totally separated from the mother cell only when oocytes reach the MII stage; (2) the morphology of the spindle changed from barrel-shaped at the metaphase stage to cylinder-shaped at early anaphase, and then to a thin, long triangle-shaped cone at late anaphase and telophase stages; (3) chromosome morphology went from an individual visible stage at metaphase to a less defined chromatin state during anaphase and telophase stages, and then back to visible individual chromosomes at the next metaphase; (4) chromatin that connected with the floor of the cone became the polar bodies and expelled, and almost all of the microtubules (MTs) and microfilaments (MFs) composing the spindles moved towards and contributed to the polar bodies; and (5) the size of the metaphase I (MI) spindle was larger than the metaphase II (MII) and metaphase III (MIII) spindles. The MII spindle, however, is more barrel-shaped than the MI spindle. This study suggests that spindle MTs and MFs during bovine oocyte meiosis are asymmetrically divided into the polar bodies.  相似文献   

17.
18.
Our objective was to examine the developmental fate of sperm nuclei in oocytes fertilized under conditions of meiotic arrest. Therefore zona-free metaphase II oocytes and oocyte fragments (nucleate and anucleate) were fertilized in the presence of colcemid. In anucleate oocyte fragments, normal male pronuclei develop. In contrast, in intact oocytes and nucleate fragments sperm nuclei after initial decondensation undergo secondary condensation. This state is maintained as long as the oocytes are treated with colcemid. When the drug is removed 3 h after insemination, the meiotic spindle(s) is reconstructed, the second polar body(ies) is extruded, and a female pronucleus (or micronuclei) forms. At the same time the sperm nucleus decondenses again and transforms into a male pronucleus. In addition oocytes fertilized in the presence of colcemid could not be refertilized. These observations suggest that oocytes and oocyte fragments fertilized in the presence of colcemid undergo activation despite the failure of pronucleus formation. The inhibitory effect of colcemid on the formation of pronuclei is expressed only in the presence of oocyte chromosomes. We suggest that colcemid stabilizes factors responsible for chromosome condensation that are associated with oocyte chromosomes but not factors (whether the same or different) present in the cytoplasm.  相似文献   

19.
The oocytes of LT/Sv strain mice are unique in that a high proportion of them (∼40% in this study) are ovulated before reaching metaphase of the second meiotic division (metaphase II). The remaining oocytes of LT/Sv mice are ovulated at metaphase II, as in other strains of mice. When recently ovulated oocytes were cultured in vitro for 11–12 h, those ovulated at metaphase II remained at this stage, whereas those ovulated at metaphase of the first meiotic division (metaphase I) commonly resumed meiosis during in vitro aging. These oocytes extrude the polar body and form a diploid pronucleus. This oocyte activation is not coupled with cortical granule exocytosis. The oocytes ovulated at metaphase II are fully capable of normal fertilization, whereas those ovulated at metaphase I are not. Approximately 50% of metaphase I oocytes penetrated by spermatozoa remain at this stage, and sperm nuclei frequently undergo premature chromosome condensation. Only 13% of spermpenetrated metaphase I oocytes formed a diploid female pronucleus and a haploid male pronucleus by 4 h after insemination. These results demonstrate that the two types of ovulated LT/Sv oocytes have different potentials to undergo either spontaneous or sperm-induced activation.  相似文献   

20.
Fully grown oocytes of most laboratory mice progress without interruption from the germinal vesicle (GV) stage to metaphase II, where meiosis is arrested until fertilization. In contrast, many oocytes of strain LT mice arrest precociously at metaphase I and often undergo subsequent spontaneous parthenogenetic activation. Cytostatic factor (CSF), which prevents the degradation of cyclin B and maintains high maturation-promoting factor (MPF) activity, is required for maintenance of metaphase I-arrest in LT oocytes, similar to its requirement for maintaining metaphase II-arrest in normal oocytes. However, CSF does not instigate metaphase I-arrest since a temporary metaphase I-arrest occurs in MOS-null LT oocytes. This paper addresses the mechanism(s) that may instigate metaphase I-arrest and tests the hypothesis that there may be one or more defects in LT oocytes that delay their acquisition of competence to trigger the cascade of processes that normally drive entry into and progression through anaphase I. To test this hypothesis, MPF activity was artificially abrogated by treating oocytes with a general protein kinase inhibitor, 6-DMAP, at various times during the progression of meiosis I. This allowed a comparison of the time at which LT and normal oocytes become competent to undergo the metaphase I/anaphase transition even if oocytes were arrested at metaphase I when 6-DMAP-treatment was begun. There were no differences between LT and control oocytes in the kinetics of MPF suppression by 6-DMAP. However, it was found that LT oocytes do not acquire competence to undergo the metaphase I/anaphase transition in response to 6-DMAP until 50-60 min after normal oocytes. A similar delay was observed in strain CX8-4 oocytes, which also have a high incidence of metaphase I-arrest, but not in strain CX8-11 oocytes, which exhibit a low incidence of metaphase I-arrest. MOS-null LT oocytes also exhibit a delay in acquisition of competence to undergo the metaphase I/anaphase transition. Thus, a delay in competence to undergo the metaphase I/anaphase transition in response to 6-DMAP-treatment correlates with metaphase I-arrest. It is therefore hypothesized that the observed delay in acquisition of competence to enter anaphase I may instigate the sustained metaphase I-arrest in LT oocytes by allowing CSF activity to rise to a level that prevents cyclin B degradation and maintains high MPF activity before anaphase can be initiated by normal triggering mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号