首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of compounds on the motility of Proteus mirabilis swarmer cells varies from one strain to another. The effect of compounds on the motility of swarmer cells is mainly at higher concentrations than the concentration used to inhibit swarming. Boric acid only affects the motility of strain G9 swarmer cells, whereas sodium deoxycholate prevented the motility of swarmer cells for three strains. Some antibiotics show their effect on the motility of swarmer cells in anaerobic areas, by slowing the movement of swarmer cells, followed by stopping the movement after a period of time or disappearance of the cells. The differentiation between the strains of Proteus species seems to be better in liquid suspension than on the solid medium.  相似文献   

2.
In this study, we identified a transposon insertion in a novel gene, designated disA, that restored swarming motility to a putrescine-deficient speA mutant of Proteus mirabilis. A null allele in disA also increased swarming in a wild-type background. The DisA gene product was homologous to amino acid decarboxylases, and its role in regulating swarming was investigated by examining the expression of genes in the flagellar cascade. In a disA mutant background, we observed a 1.4-fold increase in the expression of flhDC, which encodes FlhD(2)C(2), the master regulator of the flagellar gene cascade. However, the expressions of class 2 (fliA, flgM) and class 3 (flaA) genes were at least 16-fold higher in the disA background during swarmer cell differentiation. Overexpression of DisA on a high-copy-number plasmid did not significantly decrease flhDC mRNA accumulation but resulted in a complete block in mRNA accumulation for both fliA and flaA. DisA overexpression also blocked swarmer cell differentiation. The disA gene was regulated during the swarming cycle, and a single-copy disA::lacZ fusion exhibited a threefold increase in expression in swarmer cells. Given that DisA was similar to amino acid decarboxylases, a panel of decarboxylated amino acids was tested for effects similar to DisA overexpression, and phenethylamine, the product of phenylalanine decarboxylation, was capable of inhibiting both swarming and the expression of class 2 and class 3 genes in the flagellar regulon. A DisA-dependent decarboxylated amino acid may inhibit the formation of active FlhD(2)C(2) heterotetramers or inhibit FlhD(2)C(2) binding to DNA.  相似文献   

3.
Proteus mirabilis is a urinary tract pathogen that differentiates from a short swimmer cell to an elongated, highly flagellated swarmer cell. Swarmer cell differentiation parallels an increased expression of several virulence factors, suggesting that both processes are controlled by the same signal. The molecular nature of this signal is not known but is hypothesized to involve the inhibition of flagellar rotation. In this study, data are presented supporting the idea that conditions inhibiting flagellar rotation induce swarmer cell differentiation and implicating a rotating flagellar filament as critical to the sensing mechanism. Mutations in three genes, fliL, fliF, and fliG, encoding components of the flagellar basal body, result in the inappropriate development of swarmer cells in noninducing liquid media or hyperelongated swarmer cells on agar media. The fliL mutation was studied in detail. FliL- mutants are nonmotile and fail to synthesize flagellin, while complementation of fliL restores wild-type cell elongation but not motility. Overexpression of fliL+ in wild-type cells prevents swarmer cell differentiation and motility, a result also observed when P. mirabilis fliL+ was expressed in Escherichia coli. These results suggest that FliL plays a role in swarmer cell differentiation and implicate FliL as critical to transduction of the signal inducing swarmer cell differentiation and virulence gene expression. In concert with this idea, defects in fliL up-regulate the expression of two virulence genes, zapA and hpmB. These results support the hypothesis that P. mirabilis ascertains its location in the environment or host by assessing the status of its flagellar motors, which in turn control swarmer cell gene expression.  相似文献   

4.
Vibrio parahaemolyticus distinguishes between life in a liquid environment and life on a surface. Growth on a surface induces differentiation from a swimmer cell to a swarmer cell type. Each cell type is adapted for locomotion under different circumstances. Swimmer cells synthesize a single polar flagellum (Fla) for movement in a liquid medium, and swarmer cells produce an additional distinct flagellar system, the lateral flagella (Laf), for movement across a solid substratum, called swarming. Recognition of surfaces is necessary for swarmer cell differentiation and involves detection of physical signals peculiar to that circumstance and subsequent transduction of information to affect expression of swarmer cell genes (laf). The polar flagellum functions as a tactile sensor controlling swarmer cell differentiation by sensing forces that restrict its movement. Surface recognition also involves a second signal, i.e. nutritional limitation for iron. Studying surface-induced differentiation could reveal a novel mechanism of gene control and lead to an understanding of the processes of surface colonization by pathogens and other bacteria.  相似文献   

5.
6.
Proteus mirabilis swarming behavior is characterized by the development of concentric rings of growth that are formed as cyclic events of swarmer cell differentiation, swarming migration, and cellular differentiation are repeated during colony translocation across a surface. This cycle produces the bull’s-eye colony often associated with cultures of P. mirabilis. How the cells communicate with one another to coordinate these perfectly synchronized rings is presently unknown. We report here the identification of a genetic locus that, when mutated, results in a precocious swarming phenotype. These mutants are defective in the temporal control of swarming migration and start swarming ca. 60 min sooner than wild-type cells. Unlike the wild type, precocious swarming mutants are also constitutive swarmer cells and swarm on minimal agar medium. The defects were found to be localized to a 5.4-kb locus on the P. mirabilis genome encoding RsbA (regulator of swarming behavior) and the P. mirabilis homologs to RcsB and RcsC. RsbA is homologous to membrane sensor histidine kinases of the two-component family of regulatory proteins, suggesting that RsbA may function as a sensor of environmental conditions required to initiate swarming migration. Introduction of a rsbA mutation back into the wild type via allelic-exchange mutagenesis reconstructed the precocious swarming phenotype, which could be complemented in trans by a plasmid-borne copy of rsbA. Overexpression of RsbA in wild-type cells resulted in precocious swarming, suggesting that RsbA may have both positive and negative functions in regulating swarming migration. A possible model to describe the role of RsbA in swarming migration is discussed.  相似文献   

7.
Autoregulation of swrAA and motility in Bacillus subtilis   总被引:1,自引:0,他引:1  
  相似文献   

8.
The IgA-degrading metalloprotease, ZapA, of the urinary tract pathogen Proteus mirabilis is co-ordinately expressed along with other proteins and virulence factors during swarmer cell differentiation. In this communication, we have used zapA to monitor IgA protease expression during the differentiation of vegetative swimmer cells to fully differentiated swarmer cells. Northern blot analysis of wild-type cells and beta-galactosidase measurements using a zapA:lacZ fusion strain indicate that zapA is fully expressed only in differentiated swarmer cells. Moreover, the expression of zapA on nutrient agar medium is co-ordinately regulated in concert with the cycles of cellular differentiation, swarm migration and consolidation that produce the bull's-eye colonies typically associated with P. mirabilis. ZapA activity is not required for swarmer cell differentiation or swarming behaviour, as ZapA- strains produce wild-type colony patterns. ZapA- strains fail to degrade IgA and show decreased survival compared with the wild-type cells during infection in a mouse model of ascending urinary tract infection (UTI). These data underscore the importance of the P. mirabilis IgA-degrading metalloprotease in UTI. Analysis of the nucleotide sequences adjacent to zapA reveals four additional genes, zapE, zapB, zapC and zapD, which appear to possess functions required for ZapA activity and IgA proteolysis. Based on homology to other known proteins, these genes encode a second metalloprotease, ZapE, as well as a ZapA-specific ABC transporter system (ZapB, ZapC and ZapD). A model describing the function and interaction of each of these five proteins in the degradation of host IgA during UTI is presented.  相似文献   

9.
Serratia marcescens exists in two cell forms and displays two kinds of motility depending on the type of growth surface encountered (L. Alberti and R. M. Harshey, J. Bacteriol. 172:4322-4328, 1990). In liquid medium, the bacteria are short rods with few flagella and show classical swimming behavior. Upon growth on a solid surface (0.7 to 0.85% agar), they differentiate into elongated, multinucleate, copiously flagellated forms that swarm over the agar surface. The flagella of swimmer and swarmer cells are composed of the same flagellin protein. We show in this study that disruption of hag, the gene encoding flagellin, abolishes both swimming and swarming motility. We have used transposon mini-Mu lac kan to isolate mutants of S. marcescens defective in both kinds of motility. Of the 155 mutants obtained, all Fla- mutants (lacking flagella) and Mot- mutants (paralyzed flagella) were defective for both swimming and swarming, as expected. All Che- mutants (chemotaxis defective) were also defective for swarming, suggesting that an intact chemotaxis system is essential for swarming. About one-third of the mutants were specifically affected only in swarming. Of this class, a large majority showed active "swarming motility" when viewed through the microscope (analogous to the active "swimming motility" of Che- mutants) but failed to show significant movement away from the site of initial inoculation on a macroscopic scale. These results suggest that bacteria swarming on a solid surface require many genes in addition to those required for chemotaxis and flagellar function, which extend the swarming movement outward. We also show in this study that nonflagellate S. marcescens is capable of spreading rapidly on low-agar media.  相似文献   

10.
11.
Proteus mirabilis is a dimorphic bacterium which exists in liquid cultures as a 1.5- to 2.0-microns motile swimmer cell possessing 6 to 10 peritrichous flagella. When swimmer cells are placed on a surface, they differentiate by a combination of events that ultimately produce a swarmer cell. Unlike the swimmer cell, the polyploid swarmer cell is 60 to 80 microns long and possesses hundreds to thousands of surface-induced flagella. These features, combined with multicellular behavior, allow the swarmer cells to move over a surface in a process called swarming. Transposon Tn5 was used to produce P. mirabilis mutants defective in wild-type swarming motility. Two general classes of mutants were found to be defective in swarming. The first class was composed of null mutants that were completely devoid of swarming motility. The majority of nonswarming mutations were the result of defects in the synthesis of flagella or in the ability to rotate the flagella. The remaining nonswarming mutants produced flagella but were defective in surface-induced elongation. Strains in the second general class of mutants, which made up more than 65% of all defects in swarming were motile but were defective in the control and coordination of multicellular swarming. Analysis of consolidation zones produced by such crippled mutants suggested that this pleiotropic phenotype was caused by a defect in the regulation of multicellular behavior. A possible mechanism controlling the cyclic process of differentiation and dediferentiation involved in the swarming behavior of P. mirabilis is discussed.  相似文献   

12.
13.
Salmonella enterica serovar Typhimurium can differentiate into hyperflagellated swarmer cells on agar of an appropriate consistency (0.5 to 0.8%), allowing efficient colonization of the growth surface. Flagella are essential for this form of motility. In order to identify genes involved in swarming, we carried out extensive transposon mutagenesis of serovar Typhimurium, screening for those that had functional flagella yet were unable to swarm. A majority of these mutants were defective in lipopolysaccharide (LPS) synthesis, a large number were defective in chemotaxis, and some had defects in putative two-component signaling components. While the latter two classes were defective in swarmer cell differentiation, representative LPS mutants were not and could be rescued for swarming by external addition of a biosurfactant. A mutation in waaG (LPS core modification) secreted copious amounts of slime and showed a precocious swarming phenotype. We suggest that the O antigen improves surface "wettability" required for swarm colony expansion, that the LPS core could play a role in slime generation, and that multiple two-component systems cooperate to promote swarmer cell differentiation. The failure to identify specific swarming signals such as amino acids, pH changes, oxygen, iron starvation, increased viscosity, flagellar rotation, or autoinducers leads us to consider a model in which the external slime is itself both the signal and the milieu for swarming motility. The model explains the cell density dependence of the swarming phenomenon.  相似文献   

14.
Proteus mirabilis is a Gram-negative bacterium that exists as a short rod when grown in liquid medium, but during growth on surfaces it undergoes a distinct physical and biochemical change that culminates in the formation of a swarmer cell. How P. mirabilis senses a surface is not fully understood; however, the inhibition of flagellar rotation and accumulation of putrescine have been proposed to be sensory mechanisms. Our lab recently isolated a transposon insertion in waaL, encoding O-antigen ligase, that resulted in a loss of swarming but not swimming motility. The waaL mutant failed to activate flhDC, the class 1 activator of the flagellar gene cascade, when grown on solid surfaces. Swarming in the waaL mutant was restored by overexpression of flhDC in trans or by a mutation in the response regulator rcsB. To further investigate the role of the Rcs signal transduction pathway and its possible relationship with O-antigen surface sensing, mutations were made in the rcsC, rcsB, rcsF, umoB (igaA), and umoD genes in wild-type and waaL backgrounds. Comparison of the swarming phenotypes of the single and double mutants and of strains overexpressing combinations of the UmoB, UmoD, and RcsF proteins demonstrated the following: (i) there is a differential effect of RcsF and UmoB on swarming in wild-type and waaL backgrounds, (ii) RcsF inhibits UmoB activity but not UmoD activity in a wild-type background, and (iii) UmoD is able to modulate activity of the Rcs system.  相似文献   

15.
Under the appropriate environmental conditions, the gram-negative bacterium Proteus mirabilis undergoes a remarkable differentiation to form a distinct cell type called a swarmer cell. The swarmer cell is characterized by a 20- to 40-fold increase in both cell length and the number of flagella per cell. Environmental conditions required for swarmer cell differentiation include: surface contact, inhibition of flagellar rotation, a sufficient cell density and cell-to-cell signalling. The differentiated swarmer cell is then able to carry out a highly ordered population migration termed swarming. Genetic analysis of the swarming process has revealed that a large variety of distinct loci are required for this differentiation including: genes involved in regulation, lipopolysaccharide and peptidoglycan synthesis, cell division, ATP production, putrescine biosynthesis, proteolysis and cell shape determination. The process of swarming is important medically because the expression of virulence genes and the ability to invade cells are coupled to the differentiated swarmer cell. In this review, the genetic and environmental requirements for swarmer cell differentiation will be outlined. In addition, the role of the differentiated swarmer cell in virulence and its possible role in biofilm formation will be discussed.  相似文献   

16.
The α-proteobacterium, Rhodospirillum centenum, has a complex life cycle that allows adaptation to different environments. Transitions between vegetative swim cell and swarmer cell types depend on whether the organism is growing in liquid surroundings or on a solid substrate. Moreover, starvation can induce vegetative cells to differentiate into quiescent cysts. This paper describes the results of our investigation into the role of a putative DNA-binding response regulator that is homologous to CtrA, the cell cycle regulator from Caulobacter crescentus. Deletion of ctrA from the R. centenum genome resulted in a viable strain with impaired swarming motility coupled with an increased tendency to form cysts. Conversely, overexpression of wild type CtrA or a phosphomimetic allele, CtrAD51E, suppressed cyst cell formation, whereas overexpression of a CtrAD51A allele failed to suppress encystment but did prevent swarming motility. Thus, we propose that CtrA participates within a two-component signal transduction pathway that promotes swarming motility while contributing to the suppression of cyst cell formation.  相似文献   

17.
18.
Several bacterial species possess the ability to differentiate into highly motile swarmer cells capable of rapid surface colonization. In Serratia liquefaciens, we demonstrate that initiation of swarmer-cell differentiation involves diffusible signal molecules that are released into the growth medium. Using high-performance liquid chromatography (HPLC), high resolution mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, we identified N-butanoyl-l -homoserine lactone (BHL) and N-hexanoyl-l -homoserine lactone (HHL) in cell-free Serratia culture supernatants. BHL and HHL are present in a ratio of approximately 10:1 and their structures were unequivocally confirmed by chemical synthesis. The swrlswarmer initiation) gene, the predicted translation product of which exhibits substantial homology to the Luxl family of putative Nacyl homoserine lactone (AHL) synthases is responsible for directing synthesis of both BHL and HHL. In an swrl mutant, swarming motility is abolished but can be restored by the addition of an exogenous AHL. These results add swarming motility to the rapidly expanding list of phenotypes known to be controlled through quorum sensing.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号