首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Plague, caused by the bacterium Yersinia pestis, causes die-offs of colonies of prairie dogs (Cynomys ludovicianus). It has been argued that other small rodents are reservoirs for plague, spreading disease during epizootics and maintaining the pathogen in the absence of prairie dogs; yet there is little empirical support for distinct enzootic and epizootic cycles. Between 2004 and 2006, we collected blood from small rodents captured in colonies in northern Colorado before, during, and for up to 2 yr after prairie dog epizootics. We screened 1,603 blood samples for antibodies to Y. pestis, using passive hemagglutination and inhibition tests, and for a subset of samples we cultured blood for the bacterium itself. Of the four species of rodents that were common in colonies, the northern grasshopper mouse (Onychomys leucogaster) was the only species with consistent evidence of plague infection during epizootics, with 11.1-23.1% of mice seropositive for antibody to Y. pestis during these events. Seropositive grasshopper mice, thirteen-lined ground squirrels (Spermophilus tridecemlineatus), and deer mice (Peromyscus maniculatus) were captured the year following epizootics. The appearance of antibodies to Y. pestis in grasshopper mice coincided with periods of high prairie dog mortality; subsequently, antibody prevalence rates declined, with no seropositive individuals captured 2 yr after epizootics. We did not detect plague in any rodents off of colonies, or on colonies prior to epizootics, and found no evidence of persistent Y. pestis infection in blood cultures. Our results suggest that grasshopper mice could be involved in epizootic spread of Y. pestis, and possibly, serve as a short-term reservoir for plague, but provide no evidence that the grasshopper mouse or any small rodent acts as a long-term, enzootic host for Y. pestis in prairie dog colonies.  相似文献   

2.
We characterized the relationship between fleas and their rodent hosts in the presence of prairie dog colonies and compared them to adjacent assemblages away from colonies. We evaluated the rodent-flea relationship by quantifying prevalence, probability of infestation, flea load, and intensity of fleas on rodents. As prairie dog burrows provide refugia for fleas, we hypothesized that prevalence, flea load, and intensity would be higher for rodents that are associated with black-tailed prairie dog colonies. Rodents were trapped at off- and on-colony grids, resulting in the collection of 4,509 fleas from 1,430 rodents in six study areas. The rodent community composition varied between these study areas. Flea species richness was not different between prairie dog colonies and the surrounding grasslands (p = 0.883) but was positively correlated with rodent species richness (p = 0.055). Prairie dog colonies did not increase the prevalence of fleas (p > 0.10). Flea loads on rodents did not vary between off- and on-colony grids at three of the study areas (p > 0.10). Based on the prevalence, infestation rates, and flea loads, we identified Peromyscus maniculatus, Onychomys leucogaster, and two Neotoma species as important rodent hosts for fleas and Aetheca wagneri, Orchopeus leucopus, Peromyscopsylla hesperomys, Pleochaetis exilis, and Thrassisfotus as the most important fleas associated with these rodents. Prairie dog colonies did not seem to facilitate transmission of fleas between rodent hosts, and the few rodent-flea associations exhibited significant differences between off- and on-colony grids.  相似文献   

3.
Rodents (and their fleas) that are associated with prairie dogs are considered important for the maintenance and transmission of the bacterium (Yersinia pestis) that causes plague. Our goal was to identify rodent and flea species that were potentially involved in a plague epizootic in black-tailed prairie dogs at Thunder Basin National Grassland. We collected blood samples and ectoparasites from rodents trapped at off- and on-colony grids at Thunder Basin National Grassland between 2002 and 2004. Blood samples were tested for antibodies to Y. pestis F-1 antigen by a passive hemagglutination assay, and fleas were tested by a multiplex polymerase chain reaction, for the presence of the plague bacterium. Only one of 1,421 fleas, an Oropsylla hirsuta collected in 2002 from a deer mouse, Peromyscus maniculatus, tested positive for Y. pestis. Blood samples collected in summer 2004 from two northern grasshopper mice, Onychomys leucogaster, tested positive for Y. pestis antibodies. All three positive samples were collected from on-colony grids shortly after a plague epizootic occurred. This study confirms that plague is difficult to detect in rodents and fleas associated with prairie dog colonies, unless samples are collected immediately after a prairie dog die-off.  相似文献   

4.
We compared the infestation by ixodid ticks of lizards, rodents, and birds collected simultaneously within areas representing common habitat types in Mendocino County, CA. Lizards were infested only by Ixodes pacificus Cooley and Kohls, birds by I. pacificus and Haemaphysalis leporispalustris (Packard), and rodents by I. pacificus, I. spinipalpis Hadwen and Nuttall, I. woodi Bishopp, Dermacentor occidentalis Marx, and D. variabilis (Say). Infestation by I. pacificus larvae and nymphs of lizards (Sceloporus occidentalis Baird and Girard; Elgaria spp.) and western gray squirrels (Sciurus griseus Ord) (means of 9-35 larvae and 5-6 nymphs per animal) was several times greater than for Neotoma fuscipes Baird woodrats, Peromyscus spp. mice, and birds (means of 0.9-3.5 larvae and 0-0.3 nymphs). Overall, Borrelia-refractory lizards accounted for 84% of I. pacificus larvae and 91% of nymphs collected from animals in dense woodlands. Bird species frequently utilizing tick-questing substrates such as leaf litter (guild I birds) were more heavily infested by I. pacificus subadults (5.2 larvae and 1.0 nymphs per bird) than guild IV birds with minimal perceived contact with tick-questing substrates (0.08 larvae and 0.06 nymphs per bird). Notably, guild I birds carried similar larval loads and at least 20-fold higher nymphal loads relative to woodrats and mice. Only guild IV birds carried as few I. pacificus nymphs as did these rodents. The ratios of larvae to nymphs suggest that, relative to birds, lizards, and squirrels (infested by 1.3-6.0 larvae per nymph), nocturnally active ground-dwelling rodents such as woodrats and mice are underutilized by the nymphal stage (69 to >100 larvae per nymph). The western gray squirrel and guild I-II birds (e.g., the dark-eyed junco, Junco hyemalis [L.]) were the only potential reservoirs of Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt, and Brenner (the causative agent of Lyme disease in North America) that were frequently infested with both I. pacificus larvae and nymphs and commonly utilized dense woodland habitats.  相似文献   

5.
Ground squirrels, Spermophilus tridecemlineatus, were kept in a 12:12 h light-dark cycle. As expected for a diurnal species, their locomotor activity occurred almost entirely in the daytime. Expression of mPer1 and mPer2 in the suprachiasmatic nucleus was studied at six time points by in situ hybridization. For both these genes, mRNA was highest in the first part of the subjective day (about zeitgeber time 5). This is close to the time when mPer1 and mPer2 expression is maximal in nocturnal rodents. These results have implications for understanding nonphotic phase response curves in diurnal species and thereby for guiding research on nonphotic phase shifting in people.  相似文献   

6.
To determine whether replete subadult Ixodes ticks detach more frequently from resting than from active hosts, diverse rodents and lizards were caged in an apparatus designed to record the ticks' sites of detachment relative to the resting site of the host. Replete larval Ixodes ricinus and Ixodes dammini accumulated mainly beneath the resting places of the mice (Apodemus agrarius and Peromyscus leucopus) most frequently parasitized in nature. Although nymphal I. ricinus similarly detached where these mice rested, nymphal I. dammini detached more randomly. When lizards were used as hosts, both subadult stages of I. ricinus tended to detach away from their main resting sites; these ticks detached from squirrels more randomly. Detachment ratios for other rodent hosts, that are abundantly infested by the larvae of these ticks in nature (Apodemus flavicollis and Clethrionomys glareolus), could not be derived because nymphs generally failed to attach. Our observations are consistent with reports that both subadult stages of I. dammini, but not the adult, feed on the same kind of nest-dwelling hosts and that the host range of I. ricinus is less focused. Detachment of mouse-feeding larvae from resting mice promotes subsequent nymphal attachment to conspecific hosts, and the absence of such behavior among nymphs facilitates access of the resulting adults to deer.  相似文献   

7.
SYNOPSIS. Trypanosoma microti and Haemobartonella microti were found in 1 (17%) of 6 yellow-bellied voles Microtus ochrogastev , and T. iowensis was found in 7 (11.5%) of 60 thirteen-lined ground squirrels Spermophilus tridecemlineatus in Illinois. Reports of lewisi group trypanosomes from Microtus and Spermophilus are summarized. Those from different rodent host genera are considered to belong to different species. All of the 6 species named from the host genus Sperinophilus may belong to a single species; if so, their correct name would be T. otospermophili. However, until adequate cross transmission studies are carried out, it is considered preferable to retain the names originally assigned to the North American species.  相似文献   

8.
The structure of vegetation, and how this structure varies across a landscape, is crucial to understanding the distribution of wildlife species. Between 2002 and 2004, we sampled small mammal communities and measured vegetation structure at 185 locations across a range of disturbance regimes in a shortgrass prairie ecosystem in southeastern Colorado, USA. At each sampling location, the local disturbance regime was some combination of varying intensity of livestock grazing, military training activity, and fire. Vegetation structural characteristics measured included percent bare ground, basal cover, litter, shrub density, and mean grass and shrub height. Rodent communities were described by richness, diversity, total and per capita biomass, and species abundances. Northern grasshopper mice (Onychomys leucogaster), Ord's kangaroo rats (Dipodomys ordii), silky pocket mice (Perognathus flavus), western harvest mice (Reithrodontomys megalotis), white-footed mice (Peromyscus leucopus), southern plains wood rats (Neotoma micropus), thirteen-lined ground squirrels (Spermophilus tridecemlineatus), deer mice (Peromyscus maniculatus), and spotted ground squirrels (Spermophilus spilosoma) accounted for >99 % of all captures. Canonical correlation analysis was used to assess the relationship between small mammals and vegetation structure. The first two canonical variates explained over 50 % of the variation in vegetation structure and were related to the ratio of bare ground to basal coverage and litter accumulation. Rodent community indices were most strongly related to litter accumulation and shrub density, though the models had low explanatory power. Our results agreed with published findings regarding microhabitat associations and indicated small mammal communities benefited from a system of interacting disturbances and the resulting landscape mosaic.  相似文献   

9.
Previous work demonstrated that Ixodes spinipalpis ticks maintained an enzootic cycle of Borrelia bissettii and the agent of human granulocytic ehrlichiosis (aoHGE) within woodrats (Neotoma mexicana) and deer mice (Peromyscus maniculatus) in northern Colorado (USA). Because I. spinipalpis is the only known vector of B. bissettii and aoHGE in Colorado, this study was designed to determine the reservoir status of other hosts of I. spinipalpis in five distinct ecological zones along the front range and foothills of Colorado. One hundred and twelve rodents of nine species were examined and 11 (10%) were polymerase chain reaction (PCR) positive for aoHGE; 37 (33%) were culture positive for B. bissettii, and five (4%) were coinfected with both organisms based on PCR and culture. Of these, three chipmunk species (Tamias minimus, T. quadrivittatus, and T. umbrinus) were culture positive for B. bissettii, with a single T. minimus coinfected with B. bissettii and aoHGE. In addition, one golden-mantled ground squirrel (Spermophilus lateralis) was positive for both B. bissettii and aoHGE. This is the first report of a golden-mantled ground squirrel harboring either B. bissettii or aoHGE and the initial observation that chipmunks may be a reservoir for B. bissettii in Colorado.  相似文献   

10.
Grossly visible sarcocysts were seen in the skeletal muscles of 1 of 12 13-lined ground squirrels, Spermophilus tridecemlineatus tridecemlineatus, collected in Nebraska. The tissue cyst wall was up to 5.0 microm thick and contained spikelike projections. Transmission electron microscopy of tissue cysts revealed they were similar to Sarcocystis campestris Cawthorn, Wobeser, and Gajadhar, 1983, previously known only from experimental infections in Richardson's ground squirrel Spermophilus richardsonii. Prominent electron-dense bodies were observed lining the microfilaments present in the spikelike projections of the sarcocyst wall. This is the first report of S. campestris in a natural intermediate host and the first report of this parasite outside of Saskatoon, Canada.  相似文献   

11.
1. DMBA, a chemical carcinogen, was topically applied to skin patches of hibernating and nonhibernating ground squirrels (Spermophilus tridecemlineatus). 2. Macroscopically, hyperpigmentation, hair loss and excessive skin sloughing were evident in all treated nonhibernator skin patches. 3. Histological sections of skin revealed hyperkeratosis, epidermal vesicles, acanthosis, an indistinct basal layer and increased vascularization in nonhibernators. 4. Skin patches on hibernators were unaffected by treatment showing hibernation confers protection from the pathological effects of DMBA.  相似文献   

12.
A two-way fixed model analysis of variance was used to test Moniliformis moniliformis and M. clarki for inter- and intraspecific differences with respect to 7 morphological characters used to distinguish species of the genus. M. clarki was sexually dimorphic in more characters than was M. moniliformis when specimens from their usual definitive hosts, Spermophilus tridecemlineatus and Rattus norvegicus, respectively, were compared. More characters were sexually dimorphic in both species reared in hamsters, Mesocricetus auratus, than in their usual definitive hosts or M. clarki from rats. Moniliformis clarki and M. moniliformis (n = 25 each sex, each species) from their usual hosts were significantly different at the 1% level in 6 of 7 characters studied. Further M. clarki of either sex from ground squirrels did not differ significantly in any of the 7 characters from those of the same sex from rats. When reared in hamsters, the range in number of longitudinal rows of proboscis hooks of female M. moniliformis included that of M. clarki, but the 2 species were distinct in each of the other features which distinguished them in rats and ground squirrels.  相似文献   

13.
Sexual differences in body weight of juvenile thirteen-lined ground squirrels (Spermophilus tridecemlineatus) were significant (P less than 0.05) at all weeks of age except weeks 0-4, 6, 7, 9, 20 and 24. Hibernation onset between sexes did not differ significantly. Naloxone administration did not alter weight gain nor onset of hibernation when compared to saline controls.  相似文献   

14.
While sociality has been hypothesized to drive the evolution of communicative complexity, the relationship remains to be formally tested. We derive a continuous measure of social complexity from demographic data and use this variable to explain variation in alarm repertoire size in ground-dwelling sciurid rodents (marmots, Marmota spp.; prairie dogs, Cynomys spp.; and ground squirrels, Spermophilus spp.). About 40% of the variation in alarm call repertoire size was explained by social complexity in the raw data set. To determine the degree to which this relationship may have been influenced by historical relationships between species, we used five different phylogenetic hypotheses to calculate phylogenetically independent contrasts. Less variation was significantly explained in contrast-based analyses, but a general positive relationship remained. Social complexity explained more variation in alarm call repertoire size in marmots, while sociality explained no variation in repertoire size in prairie dogs and no variation in phylogenetically based analyses of squirrels. In most cases, substantial variation remained unexplained by social complexity. We acknowledge that factors other than social complexity, per se, may contribute to the evolution of alarm call repertoire size in sciurid rodents, and we discuss alternative hypotheses. Our measure of social complexity could be used by other researchers to test explicit evolutionary hypotheses that involve social complexity.  相似文献   

15.
During the summers of 1982 and 1983, black-tailed prairie dogs (Cynomys ludovicianus) were examined for parasites. Those collected and their respective prevalence included Linognathoides cynomyis (46.3%), Opisocrostis hirsutus (53.7%), Opisocrostis tuberculatus cynomuris (2.4%), Androlaelaps fahrenholzi (12.2%), Ixodes sculptus (2.4%) and Dermacentor andersoni (4.9%). The collection data indicated that L. cynomyis, O. hirsutus and A. fahrenholzi were at low population densities during this period.  相似文献   

16.
Morphological examination of ticks feeding on northern pocket gophers, Thomomys talpoides, near Clavet (Saskatchewan, Canada) revealed the presence of two genera, Ixodes and Dermacentor. All adult ticks collected were identified as I. kingi. Single strand conformation polymorphism (SSCP) analyses and DNA sequencing of the mitochondrial 16S rRNA gene confirmed the species identity of most Ixodes immatures as I. kingi (two nymphs and 82 larvae), and the Dermacentor immatures as D. variabilis (one nymph and one larva) and D. andersoni (three larvae). Six Ixodes larvae feeding on three T. talpoides individuals were identified as four different 16S haplotypes of I. scapularis, which was unexpected because there are no known established populations of this species in Saskatchewan. However, flagging for questing ticks and further examination of the ticks feeding on T. talpoides in two subsequent years failed to detect the presence of I. scapularis near Clavet, suggesting that there is no established population of I. scapularis in this area. Nonetheless, since I. scapularis is a vector of pathogenic agents, passive and active surveillance needs to be conducted in Saskatchewan on an ongoing basis to determine if this tick species and its associated pathogens become established within the province.  相似文献   

17.
Protein synthesis is severely depressed in hibernating mammals. In the absence of significant protein synthesis, the continued turnover of proteins as a function of normal cellular activity would result in the net depletion of protein pools. We measured levels of ubiquitylated proteins in the gut of thirteen-lined ground squirrels ( Spermophilus tridecemlineatus) and liver of golden-mantled ground squirrels ( Spermophilus lateralis). In both tissues, ubiquitin conjugate concentrations increased during entrance into torpor and were elevated 2-3 fold by late torpor compared with levels in active animals. The data are consistent with a depression of proteolysis with a resultant high level of ubiquitylated proteins during the natural hypothermia of torpor. The periodic returns to euthermy during the hibernation season allow for degradation of these conjugated proteins and may serve to restore protein pools.  相似文献   

18.
Human plague risks (Yersinia pestis infection) are greatest when epizootics cause high mortality among this bacterium's natural rodent hosts. Therefore, health departments in plague‐endemic areas commonly establish animal‐based surveillance programs to monitor Y. pestis infection among plague hosts and vectors. The primary objectives of our study were to determine whether passive animal‐based plague surveillance samples collected in Colorado from 1991 to 2005 were sampled from high human plague risk areas and whether these samples provided information useful for predicting human plague case locations. By comparing locations of plague‐positive animal samples with a previously constructed GIS‐based plague risk model, we determined that the majority of plague‐positive Gunnison's prairie dogs (100%) and non‐prairie dog sciurids (85.82%), and moderately high percentages of sigmodontine rodents (71.4%), domestic cats (69.3%), coyotes (62.9%), and domestic dogs (62.5%) were recovered within 1 km of the nearest area posing high peridomestic risk to humans. In contrast, the majority of white‐tailed prairie dog (66.7%), leporid (cottontailed and jack rabbits) (71.4%), and black‐tailed prairie dog (93.0%) samples originated more than 1 km from the nearest human risk habitat. Plague‐positive animals or their fleas were rarely (one of 19 cases) collected within 2 km of a case exposure site during the 24 months preceding the dates of illness onset for these cases. Low spatial accuracy for identifying epizootic activity prior to human plague cases suggested that other mammalian species or their fleas are likely more important sources of human infection in high plague risk areas. To address this issue, epidemiological observations and multi‐locus variable number tandem repeat analyses (MLVA) were used to preliminarily identify chipmunks as an under‐sampled, but potentially important, species for human plague risk in Colorado.  相似文献   

19.
The squirrel family, Sciuridae, is one of the largest and most widely dispersed families of mammals. In spite of the wide distribution and conspicuousness of this group, phylogenetic relationships remain poorly understood. We used DNA sequence data from the mitochondrial cytochrome b gene of 114 species in 21 genera to infer phylogenetic relationships among sciurids based on maximum parsimony and Bayesian phylogenetic methods. Although we evaluated more complex alternative models of nucleotide substitution to reconstruct Bayesian phylogenies, none provided a better fit to the data than the GTR+G+I model. We used the reconstructed phylogenies to evaluate the current taxonomy of the Sciuridae. At essentially all levels of relationships, we found the phylogeny of squirrels to be in substantial conflict with the current taxonomy. At the highest level, the flying squirrels do not represent a basal divergence, and the current division of Sciuridae into two subfamilies is therefore not phylogenetically informative. At the tribal level, the Neotropical pygmy squirrel, Sciurillus, represents a basal divergence and is not closely related to the other members of the tribe Sciurini. At the genus level, the sciurine genus Sciurus is paraphyletic with respect to the dwarf squirrels (Microsciurus), and the Holarctic ground squirrels (Spermophilus) are paraphyletic with respect to antelope squirrels (Ammospermophilus), prairie dogs (Cynomys), and marmots (Marmota). Finally, several species of chipmunks and Holarctic ground squirrels do not appear monophyletic, indicating a need for reevaluation of alpha taxonomy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号