首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rice octadecanoid pathway   总被引:8,自引:0,他引:8  
Plant jasmonic acid (JA) and structurally similar animal prostaglandins play pivotal roles in regulating cellular responses against environmental cues, including the innate immune response(s). In plants, JA and its immediate precursor 12-oxo-phytodienoic acid (OPDA) are synthesized by the octadecanoid pathway, which employs at least five enzymes (lipase, lipoxygenase, allene oxide synthase and cyclase, and OPDA reductase), in addition to the enzymes involved in the beta-oxidation steps. Genetic, molecular, and biochemical analyses have led to the identification of almost all the genes of the octadecanoid pathway in Arabidopsis--a model dicotyledonous plant. In this regard, rice (Oryza sativa L.)--an important socio-economic monocotyledonous model research plant--remains poorly characterized. Until now, no gene has been specifically associated with this pathway. It is therefore of utmost importance to identify, characterize, and assign the pathway specific genes in rice. In this review, we have surveyed the rice genome, extracted a large number of putative genes of the octadecanoid pathway, and discussed their relationship with the known pathway genes from other plant species. Moreover, the achievements made so far on the rice octadecanoid pathway have also been summarized to reflect the contribution of rice towards extending our knowledge on this critical pathway in plants.  相似文献   

2.
3.
We report isolation of two novel rice (Oryza sativa L.) mitogen-activated protein kinases (MAPKs), OsMSRMK3 (multiple stress responsive) and OsWJUMK1 (wound- and JA-uninducible) that most likely exist as single copy genes in its genome. OsMSRMK3 and OsWJUMK1 encode 369 and 569 amino acid polypeptides having the MAPK family signature and phosphorylation activation motifs TEY and TDY, respectively. Steady state mRNA analyses of these MAPKs with constitutive expression in leaves of two-week-old seedlings revealed that OsMSRMK3 was up-regulated upon wounding (by cut), jasmonic acid (JA), salicylic acid (SA), ethylene, abscisic acid, hydrogen peroxide (H(2)O(2)), protein phosphatase inhibitors, chitosan, high salt/sugar, and heavy metals, whereas OsWJUMK1 not induced by either wounding, JA or SA, showed up-regulation only by H(2)O(2), heavy metals, and cold stress (12 degrees C). Moreover, these MAPKs were developmentally regulated. These results strongly suggest a role for OsMSRMK3 and OsWJUMK1 in both stress-signalling pathways and development in rice.  相似文献   

4.
Octadecanoid pathway components, 12-oxo-phytodieonic acid (OPDA) and jasmonic acid (JA), are key biologically active regulators of plant self-defense response(s). However, to date these compounds have been studied mostly in dicots, and used large (1-10 g fresh weight, FW) samples for quantification, even when examined in mature rice plants, which is a drawback considering their rapid responsiveness to stress. Focusing on rice--a monocot cereal crop research model--this work describes an efficient and simultaneous quantification of both OPDA and JA using a minimum amount of 200mg FW seedling leaf tissue upon wounding (by cut) and treatment with fungal elicitor, chitosan (CT) by high-pressure liquid chromatography-turboionspray tandem mass spectrometry. Transient OPDA/JA "burst" was consistently and reproducibly detected within 3 min in wounded and CT treated leaves. OPDA peaked dramatically around 5 min and returned to its basal level within 15 min, whereas JA induction upon wounding and CT treatment were in parallel to OPDA production, peaking at 30 and 60 min, respectively. Present results mark a major advance in our understanding of key inducible octadecanoid pathway components in rice, and strongly suggest a role for the octadecanoid pathway downstream of perception of at least these two fundamentally different extracellular stimuli.  相似文献   

5.
Mitogen‐activated protein kinase (MAPK) cascades mediate cellular responses to environmental signals. Previous studies in the fungal pathogen Fusarium oxysporum have revealed a crucial role of Fmk1, the MAPK orthologous to Saccharomyces cerevisiae Fus3/Kss1, in vegetative hyphal fusion and plant infection. Here, we genetically dissected the individual and combined contributions of the three MAPKs Fmk1, Mpk1 and Hog1 in the regulation of development, stress response and virulence of F. oxysporum on plant and animal hosts. Mutants lacking Fmk1 or Mpk1 were affected in reactive oxygen species (ROS) homeostasis and impaired in hyphal fusion and aggregation. Loss of Mpk1 also led to increased sensitivity to cell wall and heat stress, which was exacerbated by simultaneous inactivation of Fmk1, suggesting that both MAPKs contribute to cellular adaptation to high temperature, a prerequisite for mammalian pathogens. Deletion of Hog1 caused increased sensitivity to hyperosmotic stress and resulted in partial rescue of the restricted colony growth phenotype of the mpk1Δ mutant. Infection assays on tomato plants and the invertebrate animal host Galleria mellonella revealed distinct and additive contributions of the different MAPKs to virulence. Our results indicate that positive and negative cross‐talk between the three MAPK pathways regulates stress adaptation, development and virulence in the cross‐kingdom pathogen F. oxysporum.  相似文献   

6.
植物中的MAPK及其在信号传导中的作用   总被引:7,自引:0,他引:7  
促分裂原活化蛋白激酶(MAPKs)是一类存在于真核生物中的丝氨酸/苏氨酸蛋白激酶。同动物和酵母中MAPKs类似,植物中的MAPK级联途径也是由MAPKs、MAPKKs、MAPKKKs三种类型的激酶组成。植物细胞内受体接受外界刺激信号,然后依次磷酸化激活MAPKKKs、MAPKKs和MAPKs,并影响相关基因表达。目前已经从植物中分离到一些MAPKs、MAPKKs和MAPKKKs,它们参与了植物激素、生物胁迫及非生物胁迫等过程的信号传导。介绍了植物响应外界环境胁迫过程中,不同机制和因子对MAPKs级联途径的调控。  相似文献   

7.
目的:丝裂原活化蛋白激酶(Mitogen-activated Protein Kinases, MAPKs)是细胞内重要的信号传导通路,双位点特异性磷酸酶(Mitogen-activated Protein Kinase Phosphatases, MKPs)去磷酸化MAPKs,负调控MAPKs的信号传递。在MKPs去磷酸化MAPKs的过程中,MAPKs同时会激活部分MKPs的催化能力,MKP1便是其中之一。本文旨在比较三种经典MAPKs底物,ERK2、JNK1和p38α对MKP1磷酸酶催化能力的激活效果,进一步理解MAPKs与MKP1的底物特异性机制。方法:以p NPP为底物,检测在不同浓度的非磷酸化ERK2、JNK1和p38α存在下,MKP1-CD催化结构域片段蛋白质去磷反应速度的变化,对比所得的动力学参数以确定MAPKs对MKP1激活程度的差异。结果:ERK2和JNK1能够激活MKP1的催化活力,将催化速率提升1.5~2倍,而ERK2与MKP1的结合力比JNK1弱约6倍;p38α则没有观察到对MKP1去磷酸化能力的激活效果。结论:三种经典MAPKs中,ERK2和JNK1能够激活MKP1催化活力,而p38α则无法激活MKP1,进一步揭示了MAPKs和MKPs间的特异性相互作用,以及底物对MKPs活力的影响。  相似文献   

8.
p38 MAPKs在细胞周期调控中的作用   总被引:3,自引:0,他引:3  
Chen Y  Miao ZH  Ding J 《生理科学进展》2004,35(4):315-320
p38丝裂原活化蛋白激酶(mitogen-activated protein kinases,MAPKs)作为MAPK家族的成员,传统认为它主要参与调控细胞应激反应和免疫反应。近年来发现它还参与调控细胞的增殖、凋亡和分化。在不同应激刺激下,p38 MAPKs通过多条信号转导通路作用于细胞周期的各个检验点,抑制细胞增殖,阻滞细胞于不同周期。  相似文献   

9.
为了探讨空心莲子草(Alternantheraphiloxeroides(Mart.)Griseb)的抗盐机理,测定了盐胁迫条件下的空心莲子草和水稻中保护酶活性和渗透调节物质的变化。结果表明,在盐胁迫下,空心莲子草中的脯氨酸、甜菜碱以及SOD、POD等含量增加速度比水稻快,膜脂过氧化产物丙二醛的含量在两种植物中虽亦增加,但在空心莲子草叶中的增加幅度小于水稻。证明盐胁迫下保护酶活性和渗透调节物质含量的迅速增加是空心莲子草具有较强抗盐能力的重要生理学基础。  相似文献   

10.
目的:观察丝裂原活化的蛋白激酶(MAPKs)抑制剂对大鼠肝细胞谷胱甘肽(GSH)代谢的影响,确定哪条途径与GSH代谢相关。方法:体外培养BRL大鼠肝细胞,以c-Jun NH2-末端激酶(JNK)途径抑制剂SP600125、p38途径抑制剂SB203580、细胞外信号调节激酶1/2(ERK1/2)途径抑制剂PD98659处理24 h,采用MTT法测定细胞活力,高效液相色谱法测定细胞内GSH含量,Luminex法测定JNK和磷酸化JNK (p-JNK)的蛋白表达,采用试剂盒测定GSH代谢酶活性。结果:SP600125浓度>5 μmol/L,SB203580浓度>20 μmol/L,PD98659浓度>40 μmol/L时,细胞活力受抑制;SP600125能显著减少大鼠肝细胞内还原型GSH的含量,SB203580和PD98659作用不明显;SP600125显著减少磷酸化JNK (p-JNK)蛋白表达,显著增强谷胱甘肽过氧化物酶(GSH-Px)的活力。结论:JNK MAPK途径参与了大鼠肝细胞GSH的代谢。  相似文献   

11.
Tumor hypoxia has been reported to be a negative prognostic factor in a number of tumor sites, which suggests a positive correlation between tumor hypoxia and increased metastatic efficiency. Evidence shows that vascular endothelial growth factor (VEGF) stimulates angiogenesis in tumor growth and mediates neuroprotection to prevent an apoptotic cell death. Human neuroblastoma cells (CHP126) were exposed to moderate hypoxia for different time spans to explore the molecular stress responses. Apoptotic features as an increase of Bax/Bcl-2 ratio and activation of caspase 3 were observed at early period of exposure time, but these effects were reversed with the extension of hypoxic treatment. Hypoxia also activated MAPKs signaling pathways in a time-relative manner, which were involved in the regulation of hypoxia-related resistance of CHP126 cells. Meanwhile, VEGF and its receptor KDR were found to interact with MAPKs signaling pathways except the effect of hypoxia. Furthermore, rhVEGF165 was utilized to discern that VEGF increased Bcl-2 and procaspase 3 expressions, contributing to a synergistic relationship of an angiogenic response with Bcl-2 in hypoxia via a cross talk, while the activation of ERK MAPK is important for both productions. These altered signals may be critical to predict a poor outcome; therefore, our knowledge provides new insight into apoptosis and angiogenesis control of tumor cells and suggests a strategy based on the blockade of hypoxia-induced VEGF signaling under hypoxia in neuroblastoma.  相似文献   

12.
OsWRKY71, a rice transcription factor, is involved in rice defense response   总被引:13,自引:0,他引:13  
  相似文献   

13.
稻米品质形成的生理基础研究进展   总被引:14,自引:1,他引:13  
综述了水稻(Oryza sativa L)米质形成的生理基础的研究进展,主要包括稻米品质形成期的源库特征、淀粉合成的关键酶以及淀粉粒的形态、结构及其糊化特性等几个内容,从植物生理学角度来揭示稻米品质形成的规律有着重要的理论意义.  相似文献   

14.
15.
施加外源物质对盐胁迫下水稻生长发育的影响   总被引:1,自引:0,他引:1  
水稻是重要的粮食作物之一,属于不耐盐的甜土植物,土壤盐渍化是影响其产量和生长发育的主要因素。消除或缓解盐胁迫是当务之急,目前主要应用传统育种、转基因技术及外源物质缓解盐胁迫。拟从外源物质对盐胁迫下水稻的影响作一综述,旨在为水稻生产及抗性育种提供理论依据和实践方法。  相似文献   

16.
17.
王青  周联  董燕  周婷  王培训 《生物磁学》2011,(11):2087-2089
目的:研究大黄素对IFN-和LPS刺激的人结肠癌细胞株HT-29细胞的ERK、JNK和p38MARK和IL-8表达的影响。方法:人结肠癌细胞株HT-29细胞与40ng/mL的IFN.共培养12h,再加入100ng/mLLPS刺激15min,用大黄素预处理进行干预。ELISA检测HT-29细胞内的ERK、JNK和p38MARK含量和细胞上清IL-8含量。结果:IFN-1和LPS刺激后HT-29细胞的ERK、JNK和p38MARK磷酸化水平和IL.8分泌明显升高。大黄素对p38和JNK磷酸化有明显的抑制作用,而对ERK磷酸化则没有明显抑制作用;大黄素能显著降低IFN-γ+LPS所引起的HT-29细胞IL-8的大量产生,并且呈明显的剂量依赖关系。结论:大黄素能有效抑制IFN-γ+LPS所引起的HT.29细胞p38和ⅢK的磷酸化,并显著降低IL-8分泌。  相似文献   

18.
目的:研究大黄素对IFN-和LPS刺激的人结肠癌细胞株HT-29细胞的ERK、JNK和p38 MARK和IL-8表达的影响。方法:人结肠癌细胞株HT-29细胞与40 ng/mL的IFN-共培养12 h,再加入100 ng/mL LPS刺激15 min,用大黄素预处理进行干预。ELISA检测HT-29细胞内的ERK、JNK和p38 MARK含量和细胞上清IL-8含量。结果:IFN-γ和LPS刺激后HT-29细胞的ERK、JNK和p38 MARK磷酸化水平和IL-8分泌明显升高。大黄素对p38和JNK磷酸化有明显的抑制作用,而对ERK磷酸化则没有明显抑制作用;大黄素能显著降低IFN-γ+LPS所引起的HT-29细胞IL-8的大量产生,并且呈明显的剂量依赖关系。结论:大黄素能有效抑制IFN-γ+LPS所引起的HT-29细胞p38和JNK的磷酸化,并显著降低IL-8分泌。  相似文献   

19.
The reported studies on the metabolism in chicken hepatocytes in comparison with those of mammals are quite different. Therefore, this study examined the effect of EGF on DNA synthesis along with its related signal cascades in primary cultured chicken hepatocytes. EGF stimulated DNA synthesis in a dose (> or =10 ng/ml)-dependent manner, which correlated with the increase in CDK-2 and CDK-4 expression. The EGF-induced increase in [3H]-thymidine incorporation was blocked by AG 1478 (an EGF receptor tyrosine kinase antagonist), genistein, and herbimycin A (tyrosine kinase inhibitors), suggesting a role in the activation and tyrosine phosphorylation of the EGF receptor. In addition, the EGF-induced stimulation of [3H]-thymidine incorporation was prevented by staurosporine, H-7, or bisindolylmaleimide I (protein kinase C inhibitors), suggesting a role of PKC. In addition, PD 98059 (a MEK inhibitor), SB 203580 (a p38 MAPK inhibitor), and SP 600125 (a JNK inhibitor) blocked the EGF-induced stimulation of [3H]-thymidine incorporation and CDK-2/4 expression. Indeed, EGF increased the translocation of PKC from the cytosol to the membrane fraction, and increased the activation of p44/42 MAPK, p38 MAPK, and JNK. Moreover, EGF increased the CDK-2, CDK-4, cyclin D1, and cyclin E expression levels but decreased the p21 and p27 expression levels. These EGF-induced increases were blocked by an EGF receptor antagonist, tyrosine kinase inhibitors, PKC inhibitors, and MAPKs inhibitors. In conclusion, EGF stimulates DNA synthesis of primary cultured chicken hepatocytes via Ca2+/PKC and the MAPKs signaling pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号