首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Immobilization of lipase on hydrophobic nano-sized magnetite particles   总被引:2,自引:0,他引:2  
As a tool for the stable enzyme reuse, enzyme immobilization has been studied for several decades. Surface-modified nano-sized magnetite (S-NSM) particles have been suggested as a support for the immobilization of enzyme in this study. Based on the finding that a lipase is strongly adsorbed onto a hydrophobic surface, NSM particles (8–12 nm) were made hydrophobic by binding of sodium dodecyl sulfate via a sulfate ester bond. Various types of measurements, such as transmission electron microscopy, X-ray diffraction, infrared spectroscopy, vibration sample magnetometer, and thermo gravimetric analysis, were conducted in characterizing S-NSM nanoparticles. S-NSM particles were used for the adsorption of porcine pancreas lipase (PPL). A dodecyl carbon chain is expected to form a spacer between the surface of the NSM and the lipase adsorbed. The immobilized PPL showed the higher specific activity of oil hydrolysis than that of free one. Immobilized PPL could be recovered by magnetic separation, and showed the constant activity during the recycles.  相似文献   

2.
Conjugation of desired molecules onto retroviral surfaces through the ease of the bioorthogonal functionalization method was demonstrated. Oxidation of surface sialic acids using periodate and further p-anisidine-catalyzed conjugation with aminooxy-bearing molecules were used to directly label retroviral envelope with a fluorescent dye. The retroviral particles that were produced from a bioorthogonally functionalized virus producing cell surface and further tethered with magnetic nanoparticles were efficiently purified by simple magnetic column separation and capable of magnet-directed transduction.  相似文献   

3.
This paper describes the random fluidic self-assembly of metallic particles into addressable two-dimensional microarrays and the use of these arrays as a platform for constructing a biochip useful for bioassays. The basic units in the assembly were the microfabricated particles carrying a straightforward visible code and the corresponding array template patterned on a glass substrate. The particles consisted of a hydrophobic and magnetic Ni-polytetrafluoroethylene (PTFE) composite layer on one face, and on the other face a gold layer that was modified for biomolecular attachment. An array template was photoresist-patterned with spatially discrete microwells in which an electrodeposited Ni-PTFE hydrophobic composite layer and a hydrophobic photo-adhesive coating were deposited. The particles, after biomaterial attachment and binding processes in bulk, were self-assembled randomly onto the lubricated bonding sites on the chip substrate, driven by a combination of magnetic, hydrophobic, and capillary interactions. The encoding symbol carried by the particles was used as the signature for the identification of each target/assay attached to the particle surface. We demonstrate here the utility of microfabricated-encoded particle arrays for conducting multianalyte immunoassays in a parallel fashion with the use of imaging detection.  相似文献   

4.
Magnetic particles for the separation and purification of nucleic acids   总被引:1,自引:0,他引:1  
Nucleic acid separation is an increasingly important tool for molecular biology. Before modern technologies could be used, nucleic acid separation had been a time- and work-consuming process based on several extraction and centrifugation steps, often limited by small yields and low purities of the separation products, and not suited for automation and up-scaling. During the last few years, specifically functionalised magnetic particles were developed. Together with an appropriate buffer system, they allow for the quick and efficient purification directly after their extraction from crude cell extracts. Centrifugation steps were avoided. In addition, the new approach provided for an easy automation of the entire process and the isolation of nucleic acids from larger sample volumes. This review describes traditional methods and methods based on magnetic particles for nucleic acid purification. The synthesis of a variety of magnetic particles is presented in more detail. Various suppliers of magnetic particles for nucleic acid separation as well as suppliers offering particle-based kits for a variety of different sample materials are listed. Furthermore, commercially available manual magnetic separators and automated systems for magnetic particle handling and liquid handling are mentioned.  相似文献   

5.
A new concept for the improvement of the downstream processing and purification is the so‐called magnetic separation. By using surface functionalized magnetic substrate particles, which selectively adsorb the target product, it can be directly separated out of a crude bioprocess stream. These methods are already used for analytical purposes, where only small amounts of functionalized particles are necessary. To apply the same concept at a larger scale, effective and economical procedures have to be provided. First, suitable process equipment has to be developed. Second, the magnetic particles have to be manufactured with a stable surface functionalization and long‐term stability for their reuse. Up to now mainly high‐gradient magnetic separation filter devices are applied for selective magnetic separation. They consist of a magnetic matrix in which the magnetic particles are trapped. In this work, a new magnetic filter is introduced that overcomes the capacity limitations of the current high‐gradient magnetic separation technology. The principle is demonstrated by selective recovery of lysozyme from hen egg white. Prior to the separation experiments magnetic beads with a strong acid cation‐exchange surface functionalization are synthesized. The separation procedure is implemented in only one unit operation. With the implementation of the displacement elution sequence lysozyme can be separated out of a hen egg white solution with a purification factor of PF=36 and a purity P=0.83.  相似文献   

6.
We investigate the competing effects of hydrophobic mismatch and chain stretching on the morphology and evolution of domains in lipid membranes via Monte Carlo techniques. We model the membrane as a binary mixture of particles that differ in their preferred lengths, with the shorter particles mimicking unsaturated nonraft lipids and the longer particles mimicking saturated raft lipids. We find that phase separation can be induced upon increasing either the ratio J/kappa of the hydrophobic surface tension J to the compressibility modulus kappa. J/kappa determines the decay length for thickness changes. When this decay length is larger than the system size the membrane remains mixed. Furthermore, increasing the thickness relaxation time can induce transient phase separation.  相似文献   

7.
Human plasma lipoproteins have strong hydrophobic interactions with steroids and their fatty acyl derivatives such as estradiol fatty acyl esters. In this work, affinity capillary electrophoresis with the partial filling technique was applied to study the hydrophobic interactions between lipoproteins, which are nanometer-sized particles, and nonconjugated steroids. The capillaries were first rinsed with one of two novel poly(vinylpyrrolidone) (PVP)-based cationic copolymers that were strongly adsorbed onto the fused-silica surface via electrostatic interactions. This surface treatment greatly suppressed the adsorption of lipoproteins. Low-density lipoprotein (LDL) and high-density lipoprotein (HDL) particles were then employed in the coated capillaries as pseudostationary phase in the partial filling mode. The changes in corrected migration times of steroids increased linearly with the filling time of the lipoproteins. The affinity constants between the steroids and lipoproteins were calculated, and the most hydrophobic steroid studied, progesterone, had stronger affinity than testosterone or androstenedione toward both LDL and HDL. Affinity between steroids and LDL was stronger than that between steroids and HDL. Interactions between the steroids and lipoproteins were mainly nonspecific with particle lipid components, whereas some were site specific with the apolipoproteins. The developed technique has great potential for determination of the affinity of various compounds toward lipoproteins.  相似文献   

8.
Enantiomer separation of amino acids in immunoaffinity micro LC-MS   总被引:1,自引:0,他引:1  
Chiral immunoaffinity microbore columns were directly interfaced with MS detection, and the effect of column length and temperature on the enantiomer separation of a number of underivatized aromatic and aliphatic amino acids was investigated utilizing an antibody chiral stationary phase that had been prepared by immobilizing a monoclonal anti-D-amino acid antibody onto silica. The stronger affinity of the antibody towards aromatic and bulky amino acids allowed separation of such analytes in a 0.75 x 150 mm column, while an increase in column length enabled separation of more weakly bound compounds. The strength of interaction between chiral selector and analytes could be modulated conveniently by lowering the temperature. For the first time, simultaneous enantiomer separation of mixtures of amino acids was achieved on antibody-based chiral stationary phases using extracted ion chromatograms.  相似文献   

9.
The adhesion forces between various surfaces were measured using the "surface forces apparatus" technique. This technique allows for the thickness of surface layers and the adhesion force between them to be directly measured in controlled vapor or liquid environments. Three types of biological surfaces were prepared by depositing various lipid-protein monolayers (with thicknesses ranging from 1 to 4 nm) on the inert, molecularly smooth mica surface: (i) hydrophobic lipid monolayers; (ii) amphiphilic polyelectrolyte surfaces of adsorbed polylysine; and (iii) deposited bacterial S-layer proteins. The adhesion, swelling, and wetting properties of these surfaces was measured as a function of relative humidity and time. Initial adhesion is due mainly to the van der Waals forces arising from nonpolar (hydrophobic) contacts. Following adhesive contact, significant molecular rearrangements can occur which alter their hydrophobic-hydrophilic balance and increase their adhesion with time. Increased adhesion is generally enhanced by (i) increased relative humidity (or degree of hydration); (ii) increased contact time; and (iii) increased rates of separation. The results are likely to be applicable to the adhesion of many other biosurfaces, and show that the hydrophobicity of a lipid or protein surface is not an intrinsic property of that surface but depends on its environment (e.g., on whether it is in aqueous solution or exposed to the atmosphere), and on the relative humidity of the atmosphere. It also depends on whether the surface is in adhesive contact with another surface and-when considering dynamic (nonequilibrium) conditions-on the time and previous history of its interaction with that surface. (c) 1993 John Wiley & Sons, Inc.  相似文献   

10.
Tropoelastin is the precursor of the extracellular protein elastin and is utilized in tissue engineering and implant technology by adapting the interface presented by surface-bound tropoelastin. The preferred orientation of the surface bound protein is relevant to biointerface interactions, as the C-terminus of tropoelastin is known to be a binding target for cells. Using recombinant human tropoelastin we monitored the binding of tropoelastin on hydrophilic silica and on silica made hydrophobic by depositing a self-assembled monolayer of octadecyl trichlorosilane. The layered organization of deposited tropoelastin was probed using neutron and X-ray reflectometry under aqueous and dried conditions. In a wet environment, tropoelastin retained a solution-like structure when adsorbed on silica but adopted a brush-like structure when on hydrophobized silica. The orientation of the surface-bound tropoelastin was investigated using cell binding assays and it was found that the C-terminus of tropoelastin faced the bulk solvent when bound to the hydrophobic surface, but a mixture of orientations was adopted when tropoelastin was bound to the hydrophilic surface. Drying the tropoelastin-coated surfaces irreversibly altered these protein structures for both hydrophilic and hydrophobic surfaces.  相似文献   

11.
Skin surface lipids (SSLs) arising from both sebaceous glands and skin removal form a complex lipid mixture composed of free fatty acids and neutral lipids. High-temperature gas chromatography coupled with electron impact or chemical ionization mass spectrometry was used to achieve a simple analytical protocol, without prior separation in classes and without prior cleavage of lipid molecules, in order to obtain simultaneously i) a qualitative characterization of the individual SSLs and ii) a quantitative evaluation of lipid classes. The method was first optimized with SSLs collected from the forehead of a volunteer. More than 200 compounds were identified in the same run. These compounds have been classified in five lipid classes: free fatty acids, hydrocarbons, waxes, sterols, and glycerides. The advantage to this method was it provided structural information on intact compounds, which is new for cholesteryl esters and glycerides, and to obtain detailed fingerprints of the major SSLs. These fingerprints were used to compare the SSL compositions from different body areas. The squalene/cholesterol ratio was used to determine the balance between sebaceous secretion and skin removal. This method could be of general interest in fields where complex lipid mixtures are involved.  相似文献   

12.
We have developed a new improved technique termed the parallel-beam spattering (PBS) method for depositing phospholipid bilayers on quartz surfaces. This technique involves atomizing the phospholipid mixture with a stream of nitrogen gas and passing this atomized mixture through two orifices separated by a distance to achieve a parallel beam of atomized particles before deposition on the quartz plate. A static electric field can easily be applied to the quartz surface. Also a goniometer of new design has been constructed to allow precise positioning of the deposited phospholipid bilayers with reference to the magnetic field. We have utilized the PBS method to deposit phosphatidylcholine/nitroxyl labeled cholestane mixtures on quartz plates and have found that hydrated bilayers of these mixtures yield ESR spectra with essentially the same characteristics as those obtained using more conventional techniques. The distinct advantage of the new technique for depositing bilayers is that there is no spectral anomaly present which usually is present when the more conventional method of depositing bilayers is used. The spectral anomaly is apparently caused by a portion of the bilayers aligned in directions not directly parallel to the quartz surface. For precision work the spectral anomaly is unacceptable. It is not observed with the new PBS method which has yielded highly reproducible results.  相似文献   

13.
《Plains anthropologist》2013,58(80):85-102
Abstract

An attempt is made to isolate and model the effects of pedoturbation on the vertical distribution of flotation particles within a site matrix. The derived model states that the concentration of particles at a specific depth is directly proportional to the initial quantity deposited and inversely proportional to the square of the distance from the original deposition. The potential value of the model is exemplified through an analysis of differences among the vertical distributions of charcoal, burnt bone, and flakage at a site in central Minnesota.  相似文献   

14.
Capillary electrophoresis was used for the separation of a combinatorially synthesized N-(substituted)-glycine (NSG) peptoid mixture. This mixture consisted of 24 trimeric compounds sharing a common backbone structure but differing in the side chain attached at the N-terminal residue. Standards of the individual components were unavailable so that development of the separation was based on the mixture. A variety of buffer additives were investigated to enhance the CE resolution of this diverse mixture. Ion-pairing agents, cyclodextrins and organic modifiers were all evaluated as buffer additives. The best separations were achieved using a combination of buffer additives, each serving a different purpose in the separation. Heptane sulphonic acid (HSA) was used to reduce hydrophobic intramolecular interactions. Methyl-β-cyclodextrin was used to provide host–guest interactions in order to resolve the very hydrophobic components of the NSG-peptoid mixture. The optimized run buffer consisted of 250 mM sodium phosphate buffer, pH 2.0, with 25 mM HSA and 40 mg/ml BCD and resulted in the resolution of 21 peaks for the 24 peptoids in the combinatorial mixture.  相似文献   

15.
The affinity of microbial cells for hydrophobic interfaces is important because it directly affects the efficiency of various bioprocesses, including green biotechnologies. The toluene-degrading bacterium Acinetobacter sp. strain Tol 5 has filamentous appendages and a hydrophobic cell surface, shows high adhesiveness to solid surfaces, and self-agglutinates. A "bald" mutant of this bacterium, strain T1, lacks the filamentous appendages and has decreased adhesiveness but retains a hydrophobic cell surface. We investigated the interaction between T1 cells and an organic solvent dispersed in an aqueous matrix. During a microbial-adhesion-to-hydrocarbon (MATH) test, which is frequently used to measure cell surface hydrophobicity, T1 cells adhered to hexadecane droplet surfaces in a monolayer, whereas wild-type cells aggregated on the droplet surfaces. The adsorbed T1 cells on the hexadecane surfaces hindered the coalescence of the droplets formed by vortexing, stabilizing the emulsion phase. Following the replacement of the aqueous phase with fresh pure water after the MATH test, a proportion of the T1 cells that had adsorbed to the hydrocarbon surface detached during further vortexing, suggesting a reversible adsorption of T1 cells. The final ratio of the adhering cells to the total cells in the detachment test coincided with that in the MATH test. The adhesion of T1 cells to the hydrocarbon surface conformed to the Langmuir adsorption isotherm, which describes reversible monolayer adsorption. Reversible monolayer adsorption should be useful for green technologies employing two-liquid-phase partitioning systems and for bioremediation because it allows effective reaction and transport of hydrophobic substrates at oil-water interfaces.  相似文献   

16.
Protein biochip arrays carrying functional groups typical of those employed for chromatographic sorbents have been developed. When components of a protein mixture are deposited upon an array's functionalized surface, an interaction occurs between the array's surface and solubilized proteins, resulting in adsorption of certain species. The application of gradient wash conditions to the surface of these arrays produces a step-wise elution of retained compounds akin to that accomplished while utilizing columns for liquid chromatography (LC) separations. In retentate chromatography-mass spectrometry (RC-MS), the "retentate" components that remain following a wash are desorbed and ionized when a nitrogen laser is fired at discrete spots on the array after treatment with a laser energy-absorbing matrix solution. Ionized components are analyzed using a time-of-flight mass spectrometer (TOF MS). The present study demonstrates that protein biochips can be used to identify conditions of pH and ionic strength that support selective retention-elution of target proteins and impurity components from ion-exchange surfaces. Such conditions give corresponding behavior when using process-compatible chromatographic sorbents under elution chromatography conditions. The RC-MS principle was applied to the separation of an Fab antibody fragment expressed in Escherichia coli as well as to the separation of recombinant endostatin as expressed in supernatant of Pichia pastoris cultures. Determined optimal array binding and elution conditions in terms of ionic strength and pH were directly applied to regular chromatographic columns in step-wise elution mode. Analysis of collected LC fractions showed favorable correlation to results predicted by the RC-MS method.  相似文献   

17.
Sorption isotherms of pancreatic lipase on solid supports were studied. It was shown that the enzyme adsorption can be described by Langmuir equation for hydrophobic surface and by the equation which takes into account reversible dimerization of the protein in the absorption layer for hydrophilic surface. The catalytic properties of adsorbed lipase depend on the nature of solid support. The significant role of the structure of adsorption layer in heterogeneous activation of the enzyme on hydrophobic surface was suggested.  相似文献   

18.
The atomic force microscope has been used to investigate microtubules and kinesin decorated microtubules in aqueous solution adsorbed onto a solid substrate. The netto negatively charged microtubules did not adsorb to negatively charged solid surfaces but to glass covalently coated with the highly positively charged silane trimethoxysilylpropyldiethylenetriamine (DETA) or a lipid bilayer of 1,2-dipalmitoyl-3-dimethylammoniumpropane. Using electron beam deposited tips for microtubules adsorbed on DETA, single protofilaments could be observed showing that the resolution is up to 5 nm. Under conditions where the silane coated surfaces are hydrophobic, microtubules opened, presumably at the seam, whose stability is lower than that of the bonds between the other protofilaments. This led to a “sheet” with a width of about 100 nm firmly attached to the surface. Microtubules decorated with a stoichiometric low amount of kinesin molecules in the presence of the non-hydrolyzable ATP-analog 5′-adenylylimidodiphosphate could also be adsorbed onto silane-coated glass. Imaging was very stable and the molecules did not show any scan-induced deformation even after hundreds of scans with a scan frequency of 100 Hz. Received: 23 February 1999 / Revised version: 19 July 1999 / Accepted: 17 August 1999  相似文献   

19.
In this work, a propazine‐imprinted polymer was synthesized on the surface of modified magnetic nanoparticles to be used in the solid‐phase extraction of triazines in soil samples. The effect of different solvents on the selective extraction of target analytes was assessed to establish the optimum rebinding conditions. The obtained magnetic molecularly imprinted particles exhibited high selectivity for triazines and were easily collected and separated by an external magnetic field without additional centrifugation or filtration steps. Under optimum conditions, a magnetic molecularly imprinted solid‐phase extraction method was developed allowing the extraction of several triazines (desisopropylatrazine, desethylatrazine, simazine, atrazine, and propazine) from soil samples and their subsequent final determination by high‐performance liquid chromatography with diode‐array detection. Recoveries for the triazines studied were within the range 5.4% to 40.6%, with relative standard deviations lower than 7.0% (n = 3). The detection limits were within 0.1 to 3 ng g−1, depending upon the triazine and the type of soil used.  相似文献   

20.
It is shown that scanning force microscopy (SFM), operated in the attractive mode, can be used to obtain high resolution pictures of adsorbed fibrinogen molecules on solid surfaces, without the need for staining or special microscope grids. SFM also reveals the three-dimensional structure of the adsorbed molecules. Two forms of adsorbed fibrinogen are demonstrated on hydrophobic silicone dioxide surfaces; a trinodular about 60 nm long and a globular with about a 40 nm diameter. Polymeric networks formed after storage of the surface with adsorbed fibrinogen in PBS for 11 days are also shown. The SFM-results for the trinodular structure suggest the existence of loops or peptide chains extending outside the basic structure of the fibrinogen molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号