首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Rio Grande cutthroat trout, Oncorhynchus clarkii virginalis, has declined precipitously over the past century, and currently exhibits a highly fragmented distribution within the Canadian, Pecos and Rio Grande river systems of the western United States. The relationships between populations in the three river drainages, and between O. c. virginalis and the closely related taxa O. c. pleuriticus and O. c. stomias, are not well understood. In order to guide management decisions for the subspecies, we investigated the distribution of variation at 12 microsatellite loci and two regions of the mitochondrial genome. We observed a high level of genetic differentiation between O. c. virginalis populations occupying different headwater streams (global Fst = 0.41). However, we found evidence for previous gene flow within the Rio Grande drainage, indicating that inter-population differentiation may have been exacerbated by the recent effects of population fragmentation. Despite large-scale anthropogenic movement of individuals from the Rio Grande into the Canadian and Pecos, the genetic signature of long-term evolutionary independence between the three drainages has been retained.  相似文献   

2.
  1. Many once-perennial rivers have become intermittent. Channel drying can result in fish mortality if refuges are not available. Understanding where refuges occur and if fishes use these refuges can provide insight for species persistence and help stakeholders manage limited resources. Streamflow diversions in the Rio Grande of New Mexico can result in >60 km losses of aquatic habitat, affecting up to 30% of the range of imperiled Rio Grande silvery minnow (Hybognathus amarus). Potential refuges include areas with perennial flow below diversion dams, isolated pools, and irrigation return flows.
  2. We examined spatial and temporal patterns of both adult and young-of-year Rio Grande silvery minnow collected in isolated pools that formed during streamflow intermittency from 2009 to 2019. We hypothesised that: (1) Rio Grande silvery minnow would be more numerous in pools that persisted longer; (2) they would be more numerous in isolated pools located closer to upstream areas of perennial flow, due to upstream movement to escape drying; and (3) increased rate of aquatic habitat loss each day would result in more Rio Grande silvery minnow in isolated pools.
  3. During the 12 years of the study, we counted Rio Grande silvery minnow in 3,985 isolated pools that formed during streamflow intermittency. We related counts of Rio Grande silvery minnow in each pool to the maximum pool depth, rate of loss of aquatic habitat that occurred that day, and distance each pool was to an upstream barrier. In 2016, we examined persistence of 290 isolated pools until complete desiccation or reconnection with continuous flows occurred, and the factors that influenced pool persistence.
  4. Deeper pools persisted for longer, but depth had a small positive effect on counts of adult Rio Grande silvery minnow and no effect on counts of young-of-year in isolated pools. Adults were more numerous in upstream isolated pools, whereas young-of-year were more numerous in downstream isolated pools. Rate of channel drying had little effect on the numbers of adult Rio Grande silvery minnow in isolated pools, but more young-of-year were stranded when the rate of drying was faster. On average, pools persisted <4 days and 263 of 290 dried completely before continuous flows returned. Only 66 of 4,749 Rio Grande silvery minnow occurred in pools that did not dry completely.
  5. Rio Grande silvery minnow did not appear to escape channel intermittency; instead, they became stranded in shrinking isolated pools that did not persist long enough to act as refuges for fishes. Lack of refuge during channel intermittency would result in catastrophic mortality of fishes through complete desiccation of pools if there were no management actions, such as translocating fish. To increase persistence through streamflow intermittency, conservation actions should match the species response to intermittency by ensuring the availability of perennial-water refuges at the appropriate spatial and temporal scale.
  相似文献   

3.
The longnose dace, Rhinichthys cataractae, is a primary freshwater fish inhabiting riffle habitats in small headwater rivers and streams across the North American continent, including drainages east and west of the Continental Divide. The mitochondrially encoded cytochrome b gene (1140 bp) and 2298–2346 bp of the nuclear‐encoded genes S7 and RAG1 were obtained from 87 individuals of R. cataractae (collected from 17 sites throughout its range) and from several close relatives. Phylogenetic analyses recovered a monophyletic R. cataractae species‐group that contained Rhinichthys evermanni, Rhinichthys sp. ‘Millicoma dace’, and a non‐exclusive R. cataractae. Within the R. cataractae species‐group, two well‐supported lineages were identified, including a western lineage (containing R. evermanni, R. sp. ‘Millicoma dace’ and individuals of R. cataractae from Pacific slope drainages) and an eastern lineage (containing individuals of R. cataractae from Arctic, Atlantic, and Gulf slope drainages). Within the eastern lineage of R. cataractae, two well‐supported groups were recovered: a south‐eastern group, containing individuals from the Atlantic slope, southern tributaries to the Mississippi River, and the Rio Grande drainage; and a north‐eastern group, containing individuals from the Arctic slope and northern tributaries to the Mississippi River. Estimates of the timing of divergence within the R. cataractae species‐group, combined with ancestral area‐reconstruction methods, indicate a separation between the eastern and western lineages during the Pliocene to early‐Pleistocene, with a direction of colonization from the west of the Continental Divide eastward. Within the southern portion of its range, R. cataractae likely entered the Rio Grande drainage during the Pleistocene via stream capture events between the Arkansas River (Mississippi River drainage) and headwaters of the Rio Grande. A close relationship between populations of R. cataractae in the Rio Grande drainage and the adjacent Canadian River (Mississippi River drainage) is consistent with hypothesized stream capture events between the Pecos (Rio Grande drainage) and Canadian rivers during the late‐Pleistocene. The population of R. cataractae in the lower Rio Grande may have become separated from other populations in the Rio Grande drainage (upper Rio Grande and Pecos River) and Canadian River during the late‐Pleistocene, well before initiation of recent and significant anthropogenic disturbance within the Rio Grande drainage. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 317–333.  相似文献   

4.
Five years post-release of the arundo gall wasp, Tetramesa romana, into the riparian habitats of the lower Rio Grande River, changes in the health of the invasive weed, Arundo donax, or giant reed, have been documented. These changes in plant attributes are fairly consistent along the study area of 558 river miles between Del Rio and Brownsville, TX, and support the hypothesis that the arundo wasp has had a significant impact as a biological control agent. Plant attributes were measured prior to release in 10 quadrats at each of 10 field sites in 2007, and measured again at the same undisturbed sites, 5 years after the release of T. romana, in 2014. Above ground biomass of A. donax decreased on average by 22% across the 10 sites. This decline in biomass was negatively correlated to increased total numbers of T. romana exit holes in main and lateral shoots per site in 2014 compared to 2007. Changes in biomass, live shoot density and shoot lengths, especially the positive effect of galling on main and lateral shoot mortality, appear to be leading to a consistent decline of A. donax. Economically, this reduction in A. donax biomass is estimated to be saving 4.4 million dollars per year in agricultural water. Additional impacts are expected as populations of the wasp increase and as other biological control agents such as the arundo scale, Rhizaspidiotus donacis, become more widespread.  相似文献   

5.
6.
An invasive grass, Arundo donax, occupies thousands of hectares of arid riparian habitat along the Rio Grande in Texas and Mexico, and has negative impacts on national security, water resources, and riparian ecosystems. The shoot-tip-galling wasp Tetramesa romana was released in 2009 between Brownsville and Del Rio, Texas, and has dispersed over 800?km along the river channel. Plots along the river were surveyed for shoot counts of arundo and all other plant species in 2016 at seven sites in regions in which prior studies had documented a 22% decline in arundo biomass (estimated from live shoot length) from 2007 to 2014. Estimated live biomass declined a further 32% between 2014 and 2016. Native plants accounted for 86% of the 44 species encountered in plots. Individual plots averaged five plant species, and arundo was most abundant in only 9 of 21 plots. Arundo live biomass and shoot density were negatively associated with plant diversity, indicating that live arundo interferes with germination and/or survival of other plant species. The proportion of dead shoots in plots, proportion of wasp-galled shoots, and density of exit holes made by emerging adult wasps per metre live main shoot length were positively associated with plant diversity in a combined model. Regressions indicated that the effects of wasp damage measures on diversity were mediated through their effects on main shoot mortality. By reducing live arundo biomass, the arundo wasp is fostering recovery of native plant communities at riparian sites along the Rio Grande.  相似文献   

7.
Historical‐to‐recent climate change and anthropogenic disturbance affect species distributions and genetic structure. The Rio Grande watershed of the United States and Mexico encompasses ecosystems that are intensively exploited, resulting in substantial degradation of aquatic habitats. While significant anthropogenic disturbances in the Rio Grande are recent, inhospitable conditions for freshwater organisms likely existed prior to such disturbances. A combination of anthropogenic and past climate factors may contribute to current distributions of aquatic fauna in the Rio Grande basin. We used mitochondrial DNA and 18 microsatellite loci to infer evolutionary history and genetic structure of an endangered freshwater mussel, Popenaias popeii, throughout the Rio Grande drainage. We estimated spatial connectivity and gene flow across extant populations of P. popeii and used ecological niche models (ENMs) and approximate Bayesian computation (ABC) to infer its evolutionary history during the Pleistocene. structure results recovered regional and local population clusters in the Rio Grande. ENMs predicted drastic reductions in suitable habitat during the last glacial maximum. ABC analyses suggested that regional population structure likely arose in this species during the mid‐to‐late Pleistocene and was followed by a late Pleistocene population bottleneck in New Mexico populations. The local population structure arose relatively recently, perhaps due to anthropogenic factors. Popenaias popeii, one of the few freshwater mussel species native to the Rio Grande basin, is a case study for understanding how both geological and anthropogenic factors shape current population genetic structure. Conservation strategies for this species should account for the fragmented nature of contemporary populations.  相似文献   

8.
Rio Grande wild turkey (Meleagris gallopavo intermedia) nests suffer high predation rates exceeding 65%, which may limit recruitment. We evaluated post-nesting movements of reproductively active female Rio Grande wild turkeys. We monitored 194 nesting attempts between 2005 and 2010 and documented 17% and 32% overall apparent nest success for the Edwards Plateau and Central Rio Grande Plains study regions, respectively. Rio Grande wild turkey hens move approximately 1.2 km (SD = 0.7) between nesting attempts within a nesting season and approximately 1.4 km (SD = 1.6) between initial nesting attempts among years. Rio Grande wild turkey hens selected open areas with moderate woody cover for nesting ( = 37.7%; range = 3.0–88.2%). Patchiness of vegetation in the nesting landscape also was borne out by typically low edge-to-area ratios ( = 0.20; range = 0.040–0.732). We found no clear pattern in movement distance and either landscape composition or edge-to-area ratio for within or between breeding season nest site selection for either the Edwards Plateau or Central Rio Grande Plains study region. Based on our results, movement distances post-nest failure do not seem to influence habitat selection. © 2012 The Wildlife Society.  相似文献   

9.
Hybridization with the introduced white sucker, Catostomus commerson, has been blamed in part for the decline of the Rio Grande sucker, C. plebeius, in the upper Rio Grande basin of Colorado and New Mexico but without convincing evidence. Here we report results from a genetic study of hybridization between the two species across their sympatric range in New Mexico. We used two nuclear microsatellite markers and one mitochondrial DNA marker to identify hybrids. These genetic methods detected no F1 or backcross hybrids in larvae, young-of-the-year or adults from the upper Rio Grande basin. This indicates that hybridization between the two species occurs rarely, if ever.  相似文献   

10.
In the southwestern United States (US), the Rio Grande chub (Gila pandora) is state-listed as a fish species of greatest conservation need and federally listed as sensitive due to habitat alterations and competition with non-native fishes. Characterizing genetic diversity, genetic population structure, and effective number of breeders will assist with conservation efforts by providing a baseline of genetic metrics. Genetic relatedness within and among G. pandora populations throughout New Mexico was characterized using 11 microsatellite loci among 15 populations in three drainage basins (Rio Grande, Pecos, Canadian). Observed heterozygosity (HO) ranged from 0.71–0.87 and was similar to expected heterozygosity (0.75–0.87). Rio Ojo Caliente (Rio Grande) had the highest allelic richness (AR = 15.09), while Upper Rio Bonito (Pecos) had the lowest allelic richness (AR = 6.75). Genetic differentiation existed among all populations with the lowest genetic variation occurring within the Pecos drainage. STRUCTURE analysis revealed seven genetic clusters. Populations of G. pandora within the upper Rio Grande drainage (Rio Ojo Caliente, Rio Vallecitos, Rio Pueblo de Taos) had high levels of admixture with Q-values ranging from 0.30–0.50. In contrast, populations within the Pecos drainage (Pecos River and Upper Rio Bonito) had low levels of admixture (Q = 0.94 and 0.87, respectively). Estimates of effective number of breeders (N b ) varied from 6.1 (Pecos: Upper Rio Bonito) to 109.7 (Rio Grande: Rio Peñasco) indicating that populations in the Pecos drainage are at risk of extirpation. In the event that management actions are deemed necessary to preserve or increase genetic diversity of G. pandora, consideration must be given as to which populations are selected for translocation.  相似文献   

11.
Three new species of Habenaria (Orchidaceae) section Nudae from Rio Grande do Sul, southern Brazil, are described and illustrated: Habenaria australis, H. kleinii and H. sobraliana. These are the first records of H. sect. Nudae for the state. Based on the examination of living and dried specimens, a total of 33 species and 400 collections of Habenaria were recorded for Rio Grande do Sul. Based on this survey, an updated checklist of the genus Habenaria for Rio Grande do Sul has been compiled. Four species are known only from this state, while seven other species are restricted to southern Brazil, Argentina and Uruguay. Habenaria hieronymi, previously known only from Argentina, is recorded for the first time from Brazil, and H. brachyphyton, H. ekmaniana and H. melanopoda are new records for Rio Grande do Sul.  相似文献   

12.
1. Evapotranspiration (ET) is a major source of water depletion from riverine systems in arid and semiarid climates. Water budgets have produced estimates of total depletions from riparian vegetation ET for a 320‐km reach of the Middle Rio Grande, New Mexico, U.S.A., that have ranged from 20 to 50% of total depletions from the river. 2. Tower‐based micrometeorological measurements of riparian zone ET throughout the growing season using three‐dimensional eddy covariance provided high quality estimates of ET at the stand scale. 3. A dense stand of salt cedar (111–122 cm year–1) and a mature cottonwood (Populus deltoides ssp. wislizenia Eckenwelder) stand with an extensive understory of salt cedar (Tamaria ramosissima Ledeb) and Russian olive (Eleagnus angustifolia L.) (123 cm year–1) had the highest rates of annual ET. A mature cottonwood stand with a closed canopy had intermediate rates of ET (98 cm year–1). A less dense salt cedar stand had the lowest rates of ET (74–76 cm year–1). 4. Summer leaf area index (LAI) measurements within the four stands were positively correlated with daily ET rates. LAI measurements throughout the growing season coupled to riparian vegetation classification is a promising method for improving riverine corridor estimates of total annual riparian zone ET along a reach of river. 5. Combining recent estimates of the extent of riparian vegetation along the 320 km length of the Middle Rio Grande, from Landsat 7 imagery with annual growing season measurements of ET at the four riparian stands yields a first‐order riverine corridor estimate of total riparian zone ET of 150–250 × 106 m3 year–1. This is approximately 20–33% of total estimated depletions along this reach of river.  相似文献   

13.
Selection of habitats has regularly been suggested to influence species demography at both local and broad scales. The expectation is that selection behaviors have positive benefits via greater fitness or increased survival. The current paradigm of habitat selection theory suggests a hierarchical process, where an individual first selects where they choose to live (e.g., range) and then searches and selects locations within this range meeting life history needs. Using high‐frequency GPS data collected from reproductively active Rio Grande (= 21) and Eastern (= 23) wild turkeys, we evaluated a long‐standing theory for ground‐nesting galliformes, in that movements during the prenesting period are behaviorally focused on sampling available habitats to optimize the selection of nesting sites. Contrary to expectations, we found no evidence that reproductively active females engage in habitat sampling activities. Although most nest sites (>80% for both subspecies) fell within the prenesting range, the average minimum daily distance from nest sites for Rio Grande and Eastern wild turkey females was large [1636.04 m (SE = 1523.96) and 1937.42 m (SE = 1267.84), respectively] whereas the average absolute minimum distance from the nest site for both Rio Grande and Eastern wild turkey females was 166.46 m (SE = 299.34) and 235.01 m (SE = 337.90), respectively, and showed no clear temporal reduction as laying approached. Overall, predicted probability that any female movements before laying were initiated intersected with her nesting range (area used during incubation) was <0.25, indicating little evidence of habitat sampling. Our results suggest that the long‐standing assumption of hierarchical habitat selection by wild turkeys to identify nest sites may be incorrect. As such, habitat selection may not be the proximate driver of nest success and hence population‐level fitness. Rather, based on our results, we suggest that wild turkeys and other ground‐nesting species may be fairly plastic with regard to the selection of reproductive habitats, which is appropriate given the stochasticity of the environments they inhabit.  相似文献   

14.

Background

The stress‐gradient hypothesis predicts a shift from facilitative to competitive plant interactions with decreasing abiotic stress. This has been supported by studies along elevation and temperature gradients, but also challenged by the hypothesis of a facilitation collapse at extremely harsh sites. Although facilitation is known to be important in primary succession, few studies have examined these hypotheses along primary succession gradients.

Aim

To examine whether there is a relationship between the presence of the circumpolar cushion plant Silene acaulis and other species, and if so, whether there is a shift between positive and negative interactions along a primary succession gradient in a glacier foreland.

Location

Finse, southern Norway.

Methods

We examined the performance of the common alpine forb Bistorta vivipara, species richness of vascular plants, bryophytes and lichens, and the number of seedlings and fertile vascular plants in S. acaulis cushions, and control plots without S. acaulis, along a succession gradient with increasing distance from a glacier front, and thus decreasing abiotic stress. To examine if S. acaulis cushions modify the abiotic environment, we recorded soil temperature, moisture, organic content and pH in cushions and control plots.

Results

Bistorta vivipara performed better, as shown by bigger leaves in S. acaulis cushions compared to control plots in the harshest part of the gradient close to the glacier. There were few differences in B. vivipara performance between cushion and control plots in the more benign environment further away from the glacier. This suggests a shift from facilitative to mainly neutral interactions by S. acaulis on the performance of B. vivipara with decreasing abiotic stress. A trend, although not significant, of higher vascular species richness and fertility inside S. acaulis cushions along the whole gradient, suggests that S. acaulis also facilitates community‐level species richness. The causal mechanism of this facilitation is likely that the cushions buffer extreme temperatures.

Conclusions

Our results support the stress‐gradient hypothesis for the relationship between the cushion plant S. acaulis and the performance of a single species along a primary succession gradient in a glacier foreland. S. acaulis also tended to increase vascular plant species richness and fertility regardless of stress level along the gradient, suggesting facilitation at the community level. We found no collapse of facilitation at the most stressful end of the gradient in this alpine glacier foreland.  相似文献   

15.
We synthesize observations from 1979 to 2016 of a contact zone involving two subspecies of pocket gophers (Thomomys bottae connectens and T. b. opulentus) and their respective chewing lice (Geomydoecus aurei and G. centralis) along the Río Grande Valley in New Mexico, U.S.A., to test predictions about the dynamics of the zone. Historically, the natural flood cycle of the Rio Grande prevented contact between the two subspecies of pocket gophers. Flood control measures completed in the 1930s permitted contact, thus establishing the hybrid zone between the pocket gophers and the contact zone between their lice (without hybridization). Since that time, the pocket gopher hybrid zone has stabilized, whereas the northern chewing louse species has replaced the southern louse species at a consistent rate of ~150 m/year. The 0.2–0.8 width of the replacement zone has remained constant, reflecting the constant rate of chewing louse species turnover on a single gopher and within a local pocket gopher population. In contrast, the full width of the replacement zone (northernmost G. centralis to southernmost G. aurei) has increased annually. By employing a variety of metrics of the species replacement zone, we are better able to understand the dynamics of interactions between and among the chewing lice and their pocket gopher hosts. This research provides an opportunity to observe active species replacement and resulting distributional shifts in a parasitic organism in its natural setting.  相似文献   

16.
A common approach to re‐establishing cottonwood–willow habitat along regulated rivers is through installing dormant, rootless cuttings, yet there is little published information exploring floodplain characteristics that optimize growth of southwestern riparian willows planted in this manner. The goal of this project was to evaluate relationships between growth attributes of Salix exigua and soil texture and soil water availability. Monitoring plots were established in five willow swales planted with dormant S. exigua cuttings along the banks of the Middle Rio Grande in central New Mexico. Data analysis revealed significantly higher aerial cover, height, and stem density for S. exigua plants installed in plots with intermediate levels (15–25%) of fine textured soils distributed through the soil profile. Similar relationships were found in relation to soil water availability. Regression analysis of percent fines and available water at different depth increments provided limited explanation of variability in willow growth attributes at different plots. Findings indicate that S. exigua plants established from cuttings can achieve heights and aerial cover values similar to naturally established willow bars if the floodplain soil profile contains intermediate levels of fine textured soils and the maximum depth to groundwater is within 1.5 m of the ground surface. Where sites are dominated by coarse sand, S. exigua growth may be improved if maximum depth to groundwater is within 1 m of the ground surface.  相似文献   

17.
Examination of 248 adult specimens of whitemouth croaker Micropogonias furnieri from five localities along the Brazilian coast revealed 8735 parasites belonging to 41 metazoan species. Samples from Ceará to Bahia and Rio de Janeiro to Santa Catarina showed a high level of correct assignation (92 and 87%, respectively) and cross assignation (i.e. almost all specimens misidentified in Ceará were assigned to Bahia and almost all specimens misidentified in Bahia were classified as Ceará), so samples were pooled in the northern and south‐eastern samples, and Rio Grande do Sul was considered a southern area. Eight parasite species were characteristic of the northern localities, five species were found just in the area associated with south‐eastern localities and two species were characteristic of the southern area providing first evidence of stock discreteness. The multivariate discriminant analysis successfully discriminated three groups of localities associated with three stocks of M. furnieri in Brazil: a northern stock associated with Ceará and Bahia, a south‐eastern stock related to Rio de Janeiro and Santa Catarina and a southern stock in the area of Rio Grande do Sul, which could be considered as the northern limit of the stock associated with the Common Fishing Zone of Uruguay and Argentina.  相似文献   

18.
Summary The authors relate the first isolation ofM. canis from a pig in Rio Grande do Sul, Brazil.
Sumário Os autores relatam a primeiro isolamento doM. canis de um suino no Rio Grande do Sul, Brasil.
  相似文献   

19.
Otolith shape analysis is a powerful method for fish stock identification. We compared the otolith shape of Pagrus pagrus (Linnaeus 1758) along with its distribution in four south-western Atlantic regions where it is commercially fished: Rio de Janeiro, Rio Grande do Sul in southern Brazil, the Argentine-Uruguayan Common Fishing Zone (UA) and the Argentinian Exclusive Fishing Zone (AR). Otolith shapes were compared by Elliptical Fourier and Wavelet coefficients among specimens in a size range with similar otoliths, morphometric parameters and ages. Four potential stocks were identified: one in the AR, a second along the UA which included specimens from southern Brazil with well-marked opaque bands in its otoliths (MRS), the third in southern Brazil with faint or absent opaque bands in its otoliths (FRS) and the fourth along Rio de Janeiro. The difference in the otolith shape among regions followed differences reported using other stock identification techniques. The similarity between otoliths from UA and MRS (ANOVA-like, P > 0.01) can be explained by seasonal short-range migrations. Otoliths shape differences between MRS and FRS (ANOVA-like, P < 0.01) suggest that P. pagrus does not form a homogeneous group in southern Brazil.  相似文献   

20.

Background

Community water supplies in underserved areas of the United States may be associated with increased microbiological contamination and risk of gastrointestinal disease. Microbial and health risks affecting such systems have not been systematically characterized outside outbreak investigations. The objective of the study was to evaluate associations between self-reported gastrointestinal illnesses (GII) and household-level water supply characteristics.

Methods

We conducted a cross-sectional study of water quality, water supply characteristics, and GII in 906 households served by 14 small and medium-sized community water supplies in Alabama’s underserved Black Belt region.

Results

We identified associations between respondent-reported water supply interruption and any symptoms of GII (adjusted odds ratio (aOR): 3.01, 95% confidence interval (CI) = 1.65–5.49), as well as low water pressure and any symptoms of GII (aOR: 4.51, 95% CI = 2.55–7.97). We also identified associations between measured water quality such as lack of total chlorine and any symptoms of GII (aOR: 5.73, 95% CI = 1.09–30.1), and detection of E. coli in water samples and increased reports of vomiting (aOR: 5.01, 95% CI = 1.62–15.52) or diarrhea (aOR: 7.75, 95% CI = 2.06–29.15).

Conclusions

Increased self-reported GII was associated with key water system characteristics as measured at the point of sampling in a cross-sectional study of small and medium water systems in rural Alabama in 2012 suggesting that these water supplies can contribute to endemic gastro-intestinal disease risks. Future studies should focus on further characterizing and managing microbial risks in systems facing similar challenges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号