首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wei Q  Sun Z  He X  Tan T  Lu B  Guo X  Su B  Ji W 《PloS one》2011,6(9):e25052
Parthenogenetic embryonic stem cells are considered as a promising resource for regeneration medicine and powerful tools for developmental biology. A lot of studies have revealed that embryonic stem cells have distinct microRNA expression pattern and these microRNAs play important roles in self-renewal and pluripotency of embryonic stem cells. However, few studies concern about microRNA expression pattern in parthenogenetic embryonic stem cells, especially in non-human primate--the ideal model species for human, largely due to the limited rhesus monkey parthenogenetic embryonic stem cells (rpESCs) available and lack of systematic analysis of the basics of rpESCs. Here, we derived two novel rpESCs lines and characterized their microRNA signature by Solexa deep sequencing. These two novel rpESCs shared many properties with other primate ESCs, including expression of pluripotent markers, capacity to generate derivatives representative of all three germ layers in vivo and in vitro, maintaining of euploid karyotype even after long culture. Additionally, lack of some paternally expressed imprinted genes and identity of Single-nucleotide Polymorphism (SNP) compare to their oocyte donors support their parthenogenesis origin. By characterizing their microRNA signature, we identified 91 novel microRNAs, except those are also detected in other primate ESCs. Moreover, these two novel rpESCs display a unique microRNA signature, comparing to their biparental counterpart ESCs. Then we analyzed X chromosome status in these two novel rpESCs; results suggested that one of them possesses two active X chromosomes, the other possesses only one active X chromosome liking biparental female embryonic stem cells. Taken together, our novel rpESCs provide a new alternative to existing rhesus monkey embryonic stem cells, microRNA information expands rhesus monkey microRNA data and may help understanding microRNA roles in pluripotency and parthenogenesis.  相似文献   

2.
3.
Mesenchymal stem cells (MSCs) have received considerable attention in recent years. Particularly exciting is the prospect that MSCs could be differentiated into specialized cells of interest, which could then be used for cell therapy and tissue engineering. MSCs derived from nonhuman primates could be a powerful tool for investigating the differentiation potential in vitro and in vivo for preclinical research. The purpose of this study was to isolate cynomolgus mesenchymal stem cells (cMSCs) from adult bone marrow and characterize their growth properties and multipotency. Mononuclear cells were isolated from cynomolgus monkey bone marrow by density-gradient centrifugation, and adherent fibroblast-like cells grew well in the complete growth medium with 10 μM Tenofovir. cMSCs expressed mesenchymal markers, such as CD29, CD105, CD166 and were negative for hematopoietic markers such as CD34, CD45. Furthermore, the cells were capable of differentiating into osteogenic, chondrogenic, and adipogenic lineages under certain conditions, maintaining normal karyotype throughout extended culture. We also compared different methods (lipofection, nucleofection and lentivirus) for genetic modification of cMSCs and found lentivirus proved to be the most effective method with transduction efficiency of up to 44.6% and lowest level of cell death. The cells after transduction stably expressed green fluorescence protein (GFP) and maintained the abilities to differentiate down osteogenic and adipogenic lineages. In conclusion, these data showed that cMSCs isolated from cynomolgus bone marrow shared similar characteristics with human MSCs and might provide an attractive cell type for cell-based therapy in higher-order mammalian species disorder models.  相似文献   

4.
骨髓移植是目前治疗恶性白血病以及遗传性血液病最有效的方法之一。但是HLA相匹配的骨髓捐献者严重短缺,骨髓造血干细胞(hematopoietic stem cells,HSCs)体外培养困难,在体外修复患者骨髓造血干细胞技术不成熟,这些都大大限制了骨髓移植在临床上的应用。多能性胚胎干细胞(embryonic stem cells,ESCs)具有自我更新能力,在合适的培养条件下分化形成各种血系细胞,是造血干细胞的另一来源。在过去的二十多年里,血发生的研究是干细胞生物学中最为活跃的领域之一。小鼠及人的胚胎干细胞方面的研究最近取得了重大进展。这篇综述总结了近年来从胚胎干细胞获得造血干细胞的成就,以及在安全和技术上的障碍。胚胎干细胞诱导生成可移植性血干细胞的研究能够使我们更好地了解正常和异常造血发生的机制,同时也为造血干细胞的临床应用提供理论和实验依据。  相似文献   

5.
A stem cell is defined as a cell with the capacity to both self-renew and generate multiple differentiated progeny. Embryonic stem cells (ESC) are derived from the blastocyst of the early embryo and are pluripotent in differentiative ability. Their vast differentiative potential has made them the focus of much research centered on deducing how to coax them to generate clinically useful cell types. The successful derivation of hematopoietic stem cells (HSC) from mouse ESC has recently been accomplished and can be visualized in this video protocol. HSC, arguably the most clinically exploited cell population, are used to treat a myriad of hematopoietic malignancies and disorders. However, many patients that might benefit from HSC therapy lack access to suitable donors. ESC could provide an alternative source of HSC for these patients. The following protocol establishes a baseline from which ESC-HSC can be studied and inform efforts to isolate HSC from human ESC. In this protocol, ESC are differentiated as embryoid bodies (EBs) for 6 days in commercially available serum pre-screened for optimal hematopoietic differentiation. EBs are then dissociated and infected with retroviral HoxB4. Infected EB-derived cells are plated on OP9 stroma, a bone marrow stromal cell line derived from the calvaria of M-CSF-/- mice, and co-cultured in the presence of hematopoiesis promoting cytokines for ten days. During this co-culture, the infected cells expand greatly, resulting in the generation a heterogeneous pool of 100 s of millions of cells. These cells can then be used to rescue and reconstitute lethally irradiated mice.  相似文献   

6.
We have derived putative embryonic stem (ES) cell lines from preimplantation rabbit embryos and report here their initial characterization. Two principal cell types emerged following serial passage of explanted embryos, and each has subsequently given rise to immortalized cell lines. One cell type has morphology identical to primary outgrowths of trophectoderm, is strictly feeder-cell dependent, and spontaneously forms trophectodermal vesicles at high cell density. The second type appears to represent pluripotent ES cells derived from the inner cell mass as evidenced by (1) ability to grow in an undifferentiated state on feeder layers, (2) maintenance of a predominantly normal karyotype through serial passage (over 1 year), and (3) ability to form embryoid bodies, which form terminally differentiated cell types representative of ectoderm, mesoderm, and endoderm. These ES cells may ultimately be suitable for introduction of germline mutations (via homologous recombination). The rabbit's size, reproductive capability, and well-characterized physiology make it suitable for a wide range of investigations, particularly for development of large animal models of human disease. © 1993 Wiley-Liss, Inc.  相似文献   

7.
The ability of human embryonic stem cells to self-renew and differentiate into all cell types of the body suggests that they hold great promise for both medical applications and as a research tool for addressing fundamental questions in development and disease. Here, we provide a concise, step-by-step protocol for the derivation of human embryonic stem cells from embryos by immunosurgical isolation of the inner cell mass.  相似文献   

8.
Derivation of human embryonic stem cells in defined conditions   总被引:19,自引:0,他引:19  
We have previously reported that high concentrations of basic fibroblast growth factor (bFGF) support feeder-independent growth of human embryonic stem (ES) cells, but those conditions included poorly defined serum and matrix components. Here we report feeder-independent human ES cell culture that includes protein components solely derived from recombinant sources or purified from human material. We describe the derivation of two new human ES cell lines in these defined culture conditions.  相似文献   

9.
10.
11.
Deficiency of the nuclear factor-kappa-B essential modulator (NEMO) is a rare X-linked disorder that presents in boys as hypohydrotic ectodermal dysplasia with immunodeficiency due to defective nuclear factor-κB activation. Here we report on the generation of 2 human embryonic stem cell lines from discarded in vitro fertilization (IVF) embryos ascertained via preimplantation genetic diagnosis. We have derived two human embryonic stem cell lines that carry a T458G hypomorphic mutation in exon 4 of the NEMO (or IKBKG) gene. One of the lines is diploid male; the other is diploid female but has clonally inactivated the X-chromosome that harbors the wild-type IKBKG gene. We show that both lines are pluripotent, have the capacity to differentiate into hematopoietic progenitors, and have defective inhibitor of nuclear factor kappa-B kinase activity. These NEMO deficiency hES cell lines provide an unlimited source for differentiated cell types and may serve as a unique tool to study NEMO deficiency and potentially lead to the development of new therapies for this disease.  相似文献   

12.
This protocol details a method to derive human embryonic stem (hES) cells from single blastomeres. Blastomeres are removed from morula (eight-cell)-stage embryos and cultured until they form multicell aggregates. These blastomere-derived cell aggregates are plated into microdrops seeded with mitotically inactivated feeder cells, and then connected with neighboring microdrops seeded with green fluorescent protein-positive hES cells. The resulting blastomere-derived outgrowths are cultured in the same manner as blastocyst-derived hES cells. The whole process takes about 3-4 months.  相似文献   

13.
Despite numerous elegant transgenic mice experiments, the absence of an appropriate in vitro model system has hampered the study of the early events responsible for epidermal and dermal commitments. Embryonic stem (ES) cells are derived from the pluripotent cells of the early mouse embryo. They can be expanded infinitely in vitro while maintaining their potential to spontaneously differentiate into any cell type of the three germ layers, including epidermal cells. We recently reported that ES cells have the potential to recapitulate the reciprocal instructive ectodermal-mesodermal commitments, which are characteristic of embryonic skin formation. Derivation of epidermal cells from murine ES cells has been successfully established by exposing the cells to precisely controlled instructive influences normally found in the body, including extracellular matrix and the morphogen BMP-4. These differentiated ES cells are able to form, in culture, a multilayered epidermis coupled with an underlying dermal compartment similar to native skin. This bioengineered skin provides a powerful tool for studying the molecular mechanisms controlling skin development and epidermal stem cell properties.  相似文献   

14.
The neural crest is a transient population of multipotent progenitors contributing to a diverse array of tissues throughout the vertebrate embryo. Embryonic stem (ES) cells are able to form embryoid body and spontaneously differentiate to various lineages, following a reproducible temporal pattern of development that recapitulates early embryogenesis. Embryoid bodies were triturated and the dissociated cells were processed for fluorescence-activated cell sorting (FACS), and more than 1% of cells were identified as frizzled-3+/cadherin-11+. Expression of marker genes associated with various terminal fates was detected for chondrocytes, glia, neurons, osteoblasts and smooth muscles, indicating that the FACS-sorted frizzled-3+/cadherin-11+ cells were multipotent progenitor cells capable of differentiating to fates associated with cranial neural crest. Moreover, the sorted cells were able to self-renew and maintain multipotent differentiation potential. The derivation of cranial neural crest-like multipotent progenitor cells from ES cells provides a new tool for cell lineage analysis of neural crest in vitro.  相似文献   

15.
Derivation and characterization of pluripotent embryonic germ cells in chicken   总被引:24,自引:0,他引:24  
Embryonic germ (EG) cell lines established from primordial germ cells (PGCs) are undifferentiated and pluripotent stem cells. To date, EG cells with proven germ-line transmission have been completely established only in the mouse with embryonic stem (ES) cells. We isolated PGCs from 5.5-day-old (stage 28) chicken embryonic gonads and established a putative chicken EG cell line with EG culture medium supplemented with stem cell factor (SCF), leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF), interleukin-11 (IL-11), and insulin-like growth factor-I (IGF-I). These cells grew continuously for ten passages (4 months) on a feeder layer of mitotically active chicken embryonic fibroblasts. After several passages, these cells were characterized by screening with the periodic acid-Schiff reaction, anti-SSEA-1 antibody, and a proliferation assay. The chicken EG cells maintained characteristics of gonadal PGCs and undifferentiated stem cells. When cultured in suspension, the chicken EG cells successfully formed an embryoid body and differentiated into a variety of cell types. The chicken EG cells were injected into stage X blastodermal layer and produced chimeric chickens with various differentiated tissues derived from the EG cells. Chicken EG cells will be useful for the production of transgenic chickens and for studies of germ cell differentiation and genomic imprinting.  相似文献   

16.
Embryonic stem cells (ESC) hold great potential for the treatment of liver diseases. Here, we report the differentiation of rhesus macaque ESC along a hepatocyte lineage. The undifferentiated monkey ESC line, ORMES-6, was cultured in an optimal culture condition in an effort to differentiate them into hepatocyte-like cells in vitro. The functional efficacy of the differentiated hepatic cells was evaluated using RT-PCR for the expression of hepatocyte specific genes, and Western blot analysis and immunocytochemistry for hepatic proteins such as alpha-fetoprotein (AFP), albumin and alpha1-antitrypsin (alpha1-AT). Functional assays were performed using the periodic acid schiff (PAS) reaction and ELISA. The final yield of ESC-derived hepatocyte-like cells was measured by flow cytometry for cells that were transduced with a liver-specific lentivirus vector containing the alpha1-AT promoter driving the expression of green fluorescence protein (GFP). The treatment of monkey ESC with an optimal culture condition yielded hepatocyte-like cells that expressed albumin, alpha1-AT, AFP, hepatocyte nuclear factor 3beta, glucose-6-phophatase, and cytochrome P450 genes and proteins as determined by RT-PCR and Western blot analysis. Immunofluorescent staining showed the cells positive for albumin, AFP, and alpha1-AT. PAS staining demonstrated that the differentiated cells showed hepatocyte functional activity. Albumin could be detected in the medium after 20 days of differentiation. Flow cytometry data showed that 6.5 +/- 1.0% of the total differentiated cells were positive for GFP. These results suggest that by using a specific, empirically determined, culture condition, we were able to direct monkey ESC toward a hepatocyte lineage.  相似文献   

17.
18.
Human embryonic stem cells (hESCs) are a promising source for cell therapy in degenerative diseases. A key step in establishing the medical potential of hESCs is the development of techniques for the conversion of hESCs into tissue-restricted precursors suitable for transplantation. We recently described the derivation of multipotent mesenchymal precursors from hESCs. Nevertheless, our previous study was limited by the requirement for mouse feeders and the lack of in vivo data. Here we report a stroma-free induction system for deriving mesenchymal precursors. Selective culture conditions and fluorescence-activated cell sorting (FACS)-mediated purification yielded multipotent mesenchymal precursors and skeletal myoblasts. Skeletal muscle cells undergo in vitro maturation resulting in myotube formation and spontaneous twitching. We found that hESC-derived skeletal myoblasts were viable after transplantation into the tibialis anterior muscle of SCID/Beige mice, as assessed by bioluminescence imaging. Lack of teratoma formation and evidence of long-term myoblast engraftment suggests considerable potential for future therapeutic applications.  相似文献   

19.
Osteoblastic differentiation of monkey embryonic stem cells in vitro   总被引:2,自引:0,他引:2  
Monkey embryonic stem (ES) cell is a useful tool for preclinical studies of regenerative medicine. In this paper, we investigated whether monkey ES cells can be differentiated into osteoblasts in vitro using factors known to promote osteogenesis. We prepared embryoid bodies (EB) in the presence of retinoic acid (RA) and subsequently differentiated in the medium containing either dexamethasone (DEX) or bone morphogenetic protein (BMP)-2 in addition to osteogenic supplements (OS), specifically ascorbic acid and beta-glycerophosphate. RA treatment during EB formation induced osteoblastic marker genes, such as collagen type 1, osteopontin, and Cbfa1. For the expression of osteocalcin, however, cultivation with medium containing either DEX or BMP-2 in addition to OS was required. These results showed that osteoblasts could be derived from monkey ES cells in vitro and BMP-2 + OS was effective to induce calcification.  相似文献   

20.
Differentiation of monkey embryonic stem cells into neural lineages   总被引:5,自引:0,他引:5  
Embryonic stem (ES) cells are self-renewing, pluripotent, and capable of differentiating into all of the cell types found in the adult body. Therefore, they have the potential to replace degenerated or damaged cells, including those in the central nervous system. For ES cell-based therapy to become a clinical reality, translational research involving nonhuman primates is essential. Here, we report monkey ES cell differentiation into embryoid bodies (EBs), neural progenitor cells (NPCs), and committed neural phenotypes. The ES cells were aggregated in hanging drops to form EBs. The EBs were then plated onto adhesive surfaces in a serum-free medium to form NPCs and expanded in serum-free medium containing fibroblast growth factor (FGF)-2 before neural differentiation was induced. Cells were characterized at each step by immunocytochemistry for the presence of specific markers. The majority of cells in complex/cystic EBs expressed antigens (alpha-fetal protein, cardiac troponin I, and vimentin) representative of all three embryonic germ layers. Greater than 70% of the expanded cell populations expressed antigenic markers (nestin and musashi1) for NPCs. After removal of FGF-2, approximately 70% of the NPCs differentiated into neuronal phenotypes expressing either microtubule-associated protein-2C (MAP2C) or neuronal nuclear antigen (NeuN), and approximately 28% differentiated into glial cell types expressing glial fibrillary acidic protein. Small populations of MAP2C/NeuN-positive cells also expressed tyrosine hydroxylase (approximately 4%) or choline acetyltransferase (approximately 13%). These results suggest that monkey ES cells spontaneously differentiate into cells of all three germ layers, can be induced and maintained as NPCs, and can be further differentiated into committed neural lineages, including putative neurons and glial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号