首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-one commercially available chemical steam sterilization indicators were processed in an empty autoclave for various times at temperatures between 240 and 270 degrees F (ca. 116 and 132 degrees C). The time required to reach a sterilized reading at each temperature was plotted on a semilogarithmic time-temperature plot and compared with the time-temperature sterilization curve for Bacillus stearothermophilus. Five of the indicators had time-temperature kinetics similar to those of B. stearothermophilus, but three of these overestimated the effect of processing. Two of the indicators overestimated the effect of processing and were less sensitive to temperature changes when was B. stearothermophilus. Thirteen of the indicators had time-temperature curves that crossed the B. stearothermophilus plot. One indicator produced such ambiguous results that no determinations could be made with it. Out of 21 indicators tested, only 2 appear to be capable of accurately integrating the time-temperature effect at temperatures between 240 and 270 degrees F. The other indicators should be used only after careful analysis of their suitability for use at a given temperature.  相似文献   

2.
High-pressure CO2 treatment has been studied as a promising method for inactivating bacterial spores. In the present study, we compared this method with other sterilization techniques, including heat and pressure treatment. Spores of Bacillus coagulans, Bacillus subtilis, Bacillus cereus, Bacillus licheniformis, and Geobacillus stearothermophilus were subjected to CO2 treatment at 30 MPa and 35 degrees C, to high-hydrostatic-pressure treatment at 200 MPa and 65 degrees C, or to heat treatment at 0.1 MPa and 85 degrees C. All of the bacterial spores except the G. stearothermophilus spores were easily inactivated by the heat treatment. The highly heat- and pressure-resistant spores of G. stearothermophilus were not the most resistant to CO2 treatment. We also investigated the influence of temperature on CO2 inactivation of G. stearothermophilus. Treatment with CO2 and 30 MPa of pressure at 95 degrees C for 120 min resulted in 5-log-order spore inactivation, whereas heat treatment at 95 degrees C for 120 min and high-hydrostatic-pressure treatment at 30 MPa and 95 degrees C for 120 min had little effect. The activation energy required for CO2 treatment of G. stearothermophilus spores was lower than the activation energy for heat or pressure treatment. Although heat was not necessary for inactivationby CO2 treatment of G. stearothermophilus spores, CO2 treatment at 95 degrees C was more effective than treatment at 95 degrees C alone.  相似文献   

3.
Sterilization-in-place (batch sterilization) behavior of concentrated nutrient solutions was quantified for various nutrient solutions of fermentation processing interest. Experimental observations of sterilization temperatures and corresponding pressures suggested that sterilization pressures were substantially lower for concentrated nutrient solutions than for water. This effect was believed to be directly related to the lower vapor pressure and lower activity coefficient of these concentrated nutrient solutions. Using thermodynamic data for the specific nutrient, pressures and temperatures, calculated as a function of nutrient concentration, compared favorably with observed values. This method permits estimation of the expected sterilization pressure for concentrated nutrients for which no experimental observations have yet been made at the sterilization temperature of interest. Estimate accuracy, ranging from 0.006 to 0.06 bar, can be enhanced if one set of experimental temperature/pressure values is known at the expected sterilization scale. The potential impact of the nature of concentrated nutrient solutions on steam-in-place vessel headspace temperature distributions, D-values of B. stearothermophilus, and overall sterilization effectiveness is also discussed. The low vapor pressure of concentrated nutrient solutions was hypothesized to directly impact air removal effectiveness and sterilization performance during batch sterilization. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

4.
A plot of the thermal resistance of Bacillus subtilis var. niger spores (log D value) against temperature was linear between 37 and 190 degrees C (z = 23 degrees C), provided that the relative humidity of the spore environment was kept below a certain critical level. The corresponding plot for Bacillus stearothermophilus spores was linear in the range 150 to 180 degrees C (z = 29 degrees C) but departed from linearity at lower temperatures (decreasing z value). However, the z value of 29 degrees C was decreased to 23 degrees C if spores were dried before heat treatment. The straight line corresponding to this new z value was consistent with the inactivation rate at a lower temperature (60 degrees C). The data indicate that bacterial spores which are treated in dry heat at an environmental relative humidity near zero are inactivated mainly by a drying process. By extrapolation of the thermal resistance plot obtained under these conditions for B. subtilis var. niger spores, the D value at 0 degrees C would be about 4 years.  相似文献   

5.
A study was made to determine the effects of temperature and moisture on the D-value of a common biological indicator. Relative humidity (RH) was varied between 10 and 70% in increments of 10%, and temperature was varied between 30 and 70 degrees C in increments of 10 degrees C. Temperature was found to have a pronounced effect on the D-value. At 60% RH, the D-value varied from 15.0 min at 30 degrees C to 1.1 min at 70 degrees C. When RH was plotted against the average D-value at the various temperatures, the temperature curves at or above 50 degrees C were more erratic and the RH had a significant effect. The study showed that temperature and RH must be controlled if biological indicators are to be properly calibrated for use in ethylene oxide sterilization.  相似文献   

6.
The effect of various quantities of Butterfield phosphate buffer added to four parenteral solutions on the survival of Bacillus stearothermophilus spores heated at 121 degrees C was determined. The effect of the addition of phosphate buffer on spore survival varied with the parenteral solution. Spore survival was increased or decreased, depending upon the composition of the parenteral solution and the buffer concentration. The results obtained in these experiments attest to the fact that environmental factors, including the type of ions present and ionic concentration, affect the heat destruction rate of B. stearothermophilus spores. Therefore, the sterilization requirements of a product such as a parenteral solution may be affected by small changes in formulation.  相似文献   

7.
After transforming host cells of Bacillus stearothermophilus CU21 with a recombinant plasmid pLP11 that harbored constitutive penicillinase genes of B. licheniformis CO1, both the stability of the plasmid and specific rate of penicillinase production were studied. The temperature at which the plasmid could be kept in a stable fashion in the transformant of B. stearothermophilus CU21 (pLP11) ranged nearly from 44 to 50 degrees C, irrespective of batch and continuous cultures. Continuous and steady-state cultures of the transformant could only be realized within this narrower temperature range. Indeed, the approximate temperature ranges of growth for the host and transformant were from 40 to 70 degrees C and from 40 to 63 degrees C, respectively. Clearly, the upper limit for the growth temperature of host cells decreased when they were transformed. Kinetic patterns of penicillinase production in continuous culture of the transformant (with plasmid) from 44 to 50 degrees C differed remarkably from that of B. licheniformis CO1 (without plasmid) at 37 degrees C.  相似文献   

8.
A thermophilic bacterium Bacillus stearothermophilus IFO 12550 (ATCC 12980) was transformed with each of the following plasmids, pUB110 (kanamycin resistance, Kmr), pTB19 (Kmr and tetracycline resistance [Tcr]), and its derivative pTB90 (Kmr Tcr), by the protoplast procedure in the presence of polyethylene glycol at 48 degrees C. The transformation frequencies per regenerant for pUB110, pTB19, and pTB90 were 5.9 x 10(-3), 5.5 x 10(-3), and 2.0 x 10(-1), respectively. Among these plasmids, pTB90 was newly derived, and the restriction endonuclease cleavage map was constructed. When tetracycline (5 micrograms/ml) was added into the culture medium, the copy number of pTB90 in B. stearothermophilus was about fourfold higher than that when kanamycin (5 micrograms/ml) was added instead of tetracycline. Bacillus subtilis could also be transformed with the plasmids extracted from B. stearothermophilus and vice versa. Accordingly, pUB110, pTB19, and pTB90 served as shuttle vectors between B. stearothermophilus and B. subtilis. The requirements for replication of pTB19 in B. subtilis and B. stearothermophilus appear to be different, because some deletion plasmids (pTB51, pTB52, and pTB53) derived from pTB19 could replicate only in B. subtilis, whereas another deletion plasmid pTB92 could replicate solely in B. stearothermophilus. Plasmids pTB19 and pTB90 could be maintained and expressed in B. stearothermophilus up to 65 degrees C, whereas the expression of pUB110 in the same strain was up to 55 degrees C.  相似文献   

9.
Liquefying-type Bacillus stearothermophilus alpha-amylase was characterized. The coding gene was cloned in Bacillus subtilis and the enzyme was produced in three different host organisms: B. stearothermophilus, B. subtilis, and Escherichia coli. Properties of the purified enzyme were similar irrespective of the host. Temperature optimum was at 70-80 degrees C and pH optimum at 5.0-6.0. The enzyme was stable for 1 h in the pH range 6.0-7.5 at 80 degrees C. The enzyme was stabilized by Ca2+, Na+, and bovine serum albumin. About 50% of the activity remained after heating at 70 degrees C for 5 days or 45 min at 90 degrees C. Metal ions Cd2+, Cu2+, Hg2+, Pb2+, and Zn2+ were inhibitory, whereas EDTA, ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid, and Tendamistat were without effect. The enzyme was fully active after treatment in acetone or ethanol at 55 or 70 degrees C, respectively, for 30 min. Sodium dodecyl sulfate (1%) did not affect stability, whereas 6 M urea denatured totally at 70 degrees C. The Km value for soluble starch was 14 mg/ml. Mr is 59,000 and pI 8.8. The only difference between the enzymes produced in different hosts was in signal peptide processing.  相似文献   

10.
The sporicidal activity of chlorhexidine gluconate in aqueous and alcoholic solution against spores of Bacillus subtilis was examined over a broad temperature range. Activity was not observed at 20 degrees C even with concentrations as high as 10% chlorhexidine. Temperatures of 37 degrees-70 degrees C in combination with such high concentrations were required for reductions in spore viability. No viable spores were recoverable after 4 h contact at 55 degrees C with 10% aqueous chlorhexidine and none after 3 h contact with the alcoholic solution. Because of the high concentrations necessary for activity and the possibility of sporostasis occurring from inefficient chlorhexidine inactivation, existing inactivation systems were examined and modified to obtain satisfactory results. The spores of other Bacillus species examined (B. cereus, B. megaterium and B. stearothermophilus) proved to be considerably less resistant than those of B. subtilis. Presence of organic matter had little effect on the activity.  相似文献   

11.
Resistance of Bacillus Spores to Combined Sporicidal Treatments   总被引:1,自引:1,他引:0  
S ummary . Moist heat at 82° (100° for Bacillus stearothermophilus ) and solutions of 0.2% w/v chlorocresol or 0.01% w/v benzalkonium chloride at 24° separately showed no sporicidal activity against B. pumilis, B. stearothermophilus, B. subtilis and B. subtilis var. niger . Spores of the last organism were the most sensitive to γ radiation, the D value being 0.16 Mrad. Prior irradiation with a dose of 0.16 Mrad brought about only a slight increase in the sensitivity of the spores to moist heat. The presence of bactericide during irradiation did not affect radiation resistance. Inactivation rates were greater when the spores were heated in the presence of a bactericide than in aqueous suspension and benzalkonium chloride was more active than chlorocresol. Chlorocresol enhanced the heat activation of B. stearothermophilus at 100°. Irradiation in the presence of 0.2% w/v chlorocresol or 0.01% w/v benzalkonium chloride had no effect on the subsequent resistance of the spores when heated in the presence of these bactericides. It is concluded that it is unlikely that combinations of moist heat, radiation and bactericides, each less severe than when used in an accepted sterilization process, will lead to an alternative process which, while less damaging to the materials being sterilized, would still maintain the accepted standards of freedom from contamination.  相似文献   

12.
A safe, convenient, and economical method of preparing and dispensing a large volume of sterile water in a movable container is described. A caster-mounted, rectangular, 100-gal, stainless-steel water tank was fabricated. An audible, solid-state water-level alarm was developed for use with a detachable sensing probe that could be autoclaved. A filter system was constructed to allow the tank to be autoclaved as an open vessel. Thermocouples were mounted within the tank of water to study the time-temperature relationships of the water during the sterilization cycle. In a downward displacement autoclave with a hot jacket, 75 min were required for the water temperature to rise from 140 to 240 F (60 to 116 C). A total of 3 hr for heating and holding includes an adequate safety factor to insure the sterility of the water immediately after autoclaving. The long-term sterility of the water and the safety of the system were verified by using the water to maintain a germ-free animal colony.  相似文献   

13.
Mitochondrial F1-ATPase shows a break in the Arrhenius plot with an increase of the activation energy below 17 degrees C, this may imply that the F1-ATPase undergoes a conformational change at this temperature. Further, a structural change of the F1-ATPase is indicated by analysis of the intrinsic fluorescence at 307 nm between 33 and 11 degrees C and also by evaluation of the circular dichroism spectra of the enzyme at temperatures below and above the temperature corresponding to the discontinuity of the Arrhenius plot. It is therefore suggested that F1-ATPase exists in two temperature dependent conformational states to which different catalytic properties may be assigned.  相似文献   

14.
Bacillus spp. responsible for thermophilic aerobic digestion (TAD) of agricultural wastes were studied for their growth rate, yield and protein quality (amino acid profile) under conditions that approximate full-scale waste digestion as pointers to the capacity of TAD to achieve protein enrichment of wastes for reuse in animal feeding. Specific growth rates of the thermophiles varied with temperature and aeration rates. For Bacillus coagulans, the highest specific growth rate was 1.98 muh(-1); for Bacillus licheniformis 2.56 muh(-1) and for Bacillus stearothermophilus 2.63 muh(-1). Molar yield of B. stearothermophilus on glucose increased with temperature to a peak of 0.404 g g(-1) at 50 degrees C before declining. Peak concentration of overflow metabolite (acetate) increased from 10 mmol at 45 degrees C to 34 mmol at 65 degrees C before declining. Accumulation of biomass in all three isolates decreased with increase in temperature while protein content of biomass increased. Highest biomass protein (79%) was obtained in B. stearothermophilus at 70 degrees C. Content of most essential amino acids of the biomass improved with temperature. Amino acid profile of the biomass was comparable to or superior to the FAO standard for SCP intended for use in animal feeding. Culture condition (waste digestion condition) may be manipulated to optimize protein yield and quality of waste digested by TAD for recycling in animal feed.  相似文献   

15.
利用结晶物质在一定温度下熔融的特性,通过对四种化学试剂进行熔点测定。选出试剂A和试剂B作为干热灭菌温度指示剂和参考指示剂。试验结果表明,这两种温度指示剂终点明确,简便快速,能满足180℃干热灭菌的温度要求,可以对干热灭菌的温度验证提供客观证据  相似文献   

16.
The effect of environmental storage relative humidity (RH) on the moisture content, viability, and moist heat and gaseous ethylene oxide (EO) resistance of biological indicators (BIs) was evaluated. No statistically significant difference was observed between the initial Bacillus stearothermophilus spore population and the spore population of BIs stored at 20 degrees C and 0, 20, 44, of 55% RH or under ambient, 4 degrees C, or -20 degrees C conditions after 12 months. A statistically significant decrease in moist heat resistance from initial starting levels was found for BIs stored at 20 degrees C and either 0 or 20% RH. There was a statistically significant decrease in the B. subtilis BI spore population, compared with initial levels, when the BIs were stored at 20 degrees C and 0% RH concomitant with a significant increase in their EO resistance. BI storage at 20 degrees C and 20 or 44% RH, or under ambient, 4 degrees C, or -20 degrees C conditions, had no significant effect on EO resistance. BIs stored at 20 degrees C and 66% RH demonstrated a significantly lower EO resistance compared with starting levels.  相似文献   

17.
We report the cloning and sequence analysis of the gene for the tyrosyl-tRNA synthetase from Bacillus caldotenax and properties of the gene product. The amino acid sequence of the tyrosyl-tRNA synthetase was found to be 99% homologous with the corresponding enzyme from B. stearothermophilus, with only four amino acid differences. Two of these natural variations were found to involve active site residues of the enzyme and correspond to mutations that have been engineered previously in vitro. One, Thr-51----Ala-51, produced a more active enzyme, possessing a higher value of kcat/KM for ATP. Position 51 is a "hot spot" in the tyrosyl-tRNA synthetase, differing in enzymes derived from Escherichia coli, B. stearothermophilus, and B. caldotenax. The other, His-48----Asn-48, is found to be a neutral mutation but is in one of the rare regions that are conserved with other aminoacyl-tRNA synthetases. The equivalence of histidine and asparagine at position 48 extends the homology in this region to more enzymes. These residues, His-Ile-Gly-His, and now His-Ile-Gly-Asn, form part of the binding site for ATP in the transition state of the reaction. Although B. caldotenax is an obligate thermophile with an optimal growth temperature of 80 degrees C, as much as 20 degrees C above the growth optima of strains of Bacillus stearothermophilus, its tyrosyl-tRNA synthetase has an identical thermal stability in vitro to that from B. stearothermophilus.  相似文献   

18.
L-Arabinose isomerase (AI) catalyzes the isomerization of L-arabinose to L-ribulose. It can also convert d-galactose to d-tagatose at elevated temperatures in the presence of divalent metal ions. The araA genes, encoding AI, from the mesophilic bacterium Bacillus halodurans and the thermophilic Geobacillus stearothermophilus were cloned and overexpressed in Escherichia coli, and the recombinant enzymes were purified to homogeneity. The purified enzymes are homotetramers with a molecular mass of 232 kDa and close amino acid sequence identity (67%). However, they exhibit quite different temperature dependence and metal requirements. B. halodurans AI has maximal activity at 50 degrees C under the assay conditions used and is not dependent on divalent metal ions. Its apparent K(m) values are 36 mM for L-arabinose and 167 mM for d-galactose, and the catalytic efficiencies (k(cat)/K(m)) of the enzyme were 51.4 mM(-1)min(-1) (L-arabinose) and 0.4 mM(-1)min(-1) (d-galactose). Unlike B. halodurans AI, G. stearothermophilus AI has maximal activity at 65-70 degrees C, and is strongly activated by Mn(2+). It also has a much higher catalytic efficiency of 4.3 mM(-1)min(-1) for d-galactose and 32.5 mM(-1)min(-1)for L-arabinose, with apparent K(m) values of 117 and 63 mM, respectively. Irreversible thermal denaturation experiments using circular dichroism (CD) spectroscopy showed that the apparent melting temperature of B. halodurans AI (T(m)=65-67 degrees C) was unaffected by the presence of metal ions, whereas EDTA-treated G. stearothermophilus AI had a lower T(m) (72 degrees C) than the holoenzyme (78 degrees C). CD studies of both enzymes demonstrated that metal-mediated significant conformational changes were found in holo G. stearothermophilus AI, and there is an active tertiary structure for G. stearothermophilus AI at elevated temperatures for its catalytic activity. This is in marked contrast to the mesophilic B. halodurans AI where cofactor coordination is not necessary for proper protein folding. The metal dependence of G. stearothermophilus AI seems to be correlated with their catalytic and structural functions. We therefore propose that the metal ion requirement of the thermophilic G. stearothermophilus AI reflects the need to adopt the correct substrate-binding conformation and the structural stability at elevated temperatures.  相似文献   

19.
Rapid detection of Bacillus stearothermophilus using impedance-splitting   总被引:2,自引:0,他引:2  
An impedance splitting method was used to detect Bacillus stearothermophilus in suspension and attached to stainless steel surfaces. The effects of bacterial metabolism on the impedance of the culture medium and the ionic layers of the measuring electrodes were recorded using the BacTrac 4000 microorganism growth analyser. Impedance changes were measured at 55 degrees C. Seven of the eight media produced changes in the electrode impedance (E-value) and all media produced negligible changes in the impedance of the culture medium (M-value). Good correlations were obtained between cell numbers and the E-value measured over 18 h (r > 0.9) for the two strains of B. stearothermophilus tested in trypticase soy broth. The E-value correlations were used to estimate the numbers of both vegetative and spore forms of B. stearothermophilus as either planktonic or adhered cells. For the detection of B. stearothermophilus using impedance, only methods where the E-value impedance is recorded, can be used.  相似文献   

20.
The inactivation of spores of four low-acid food spoilage organisms by high pressure thermal (HPT) and thermal-only processing was compared on the basis of equivalent thermal lethality calculated at a reference temperature of 121.1°C (F(z)(121.1)(°)(C, 0.1 MPa or 600 MPa)) and characterized as synergistic, not different or protective. In addition, the relative resistances of spores of the different spoilage microorganisms to HPT processing were compared. Processing was performed and inactivation was compared in both laboratory and pilot scale systems and in model (diluted) and actual food products. Where statistical comparisons could be made, at least 4 times and up to around 190 times more inactivation (log(10) reduction/minute at F(T)(z)(121.1)(°)(C)) of spores of Bacillus amyloliquefaciens, Bacillus sporothermodurans, and Geobacillus stearothermophilus was achieved using HPT, indicating a strong synergistic effect of high pressure and heat. Bacillus coagulans spores were also synergistically inactivated in diluted and undiluted Bolognese sauce but were protected by pressure against thermal inactivation in undiluted cream sauce. Irrespective of the response characterization, B. coagulans and B. sporothermodurans were identified as the most HPT-resistant isolates in the pilot scale and laboratory scale studies, respectively, and G. stearothermophilus as the least in both studies and all products. This is the first study to comprehensively quantitatively characterize the responses of a range of spores of spoilage microorganisms as synergistic (or otherwise) using an integrated thermal-lethality approach (F(T)(z)). The use of the F(T)(z) approach is ultimately important for the translation of commercial minimum microbiologically safe and stable thermal processes to HPT processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号