首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent molecular and physiological studies have demonstrated that ultraviolet‐B radiation (UV‐B) can affect some of the processes involved in leaf growth, but the phases of leaf growth affected have not been clearly delimited. We used functional growth analysis to assess the effects of UV‐B radiation on the time course of leaf growth in seedlings of two birch species (Betula pendula and Betula pubescens). Our aim was to identify the phase(s) of leaf development affected by UV‐B radiation. In a greenhouse study, 1‐year‐old birch seedlings were subjected to three daily doses of supplemental UV‐B radiation treatments (UV‐B+) and no UV‐B radiation controls (UV‐B?). Leaf growth measurements every 2 days were complemented by assessment of other functional traits over a 4‐week period at the start of the growing season. Using fitted curves, we were able to determine that the rate of leaf expansion was slowed by the UV‐B+ treatment in leaves of B. pendula because of a slower maximum leaf growth rate compared with plants under the UV‐B? controls, but that compensation toward the end of the period of expansion negated this difference when leaves reached their final size. UV‐B+ had little effect on the rate of B. pubescens leaf growth despite a larger reduction in leaf final size due to UV‐B+ than occurred in B. pendula leaves. In conclusion, effective regulation ameliorated the effects of UV‐B radiation on leaf and seedling growth in B. pendula, whereas in B. pubescens, reductions in leaf final size under UV‐B+ were consistent with a slightly reduced rate of height growth.  相似文献   

2.
We examined the influence of solar ultraviolet‐B radiation (UV‐B; 280–315 nm) on the growth of Colobanthus quitensis plants by placing them under contrasting UV‐B filters at Palmer Station, along the Antarctic Peninsula. The filters reduced diurnal biologically effective UV‐B (UV‐BBE) either by 83% (‘reduced UV‐B’) or by 12% (‘near‐ambient UV‐B’) over the 63 day experiment (7 November 1998–8 January 1999). Ozone column depletion averaged 17% during the experiment. Relative growth and net assimilation rates of plants exposed to near‐ambient UV‐B were 30 and 20% lower, respectively, than those of plants exposed to reduced UV‐B. The former plants produced 29% less total biomass, as a result of containing 54% less aboveground biomass. These reductions in aboveground biomass were mainly the result of a 45% reduction in shoot biomass, and a 31% reduction in reproductive biomass. Reductions in shoot biomass were owing to an 18% reduction in branch production by main shoots, while reductions in reproductive biomass were the result of a 19% reduction in individual capsule mass. Total plant leaf area was reduced by 19% under near‐ambient UV‐B, although total leaf biomass was unaffected because leaves had a greater specific leaf mass. The reduction in plant leaf area under near‐ambient UV‐B was attributable to: (1) production of 11% fewer leaves per main shoot system and plant, which resulted from an 18% reduction in branch production by main shoots. Leaf production per individual main shoot or branch was not affected; (2) shorter leaf longevity—main shoots contained 14% fewer green leaves at a given time; and (3) smaller individual leaves—leaf elongation rates were 14% slower and mature leaves were 13% shorter.  相似文献   

3.
Stratospheric ozone depletion by anthropogenic chlorofluorocarbons has lead to increases in ultraviolet‐B radiation (UV‐B; 280–320 nm) along the Antarctic Peninsula during the austral spring. We manipulated UV‐B levels around plants of Antarctic hair grass (Deschampsia antarctica; Poaceae) and Antarctic pearlwort (Colobanthus quitensis; Caryophyllaceae) for one field season near Palmer Station along the west coast of the Antarctic Peninsula. Treatments involved placing frames over naturally growing plants that either (1) held filters that absorbed most biologically effective radiation (UV‐BBE; ‘reduced UV‐B’, 22% of ambient UV‐BBE levels), (2) held filters that transmitted most UV‐BBE (‘near‐ambient UV‐B’, 87% of ambient UV‐BBE levels), or (3) lacked filters (‘ambient UV‐B’). Leaves on D. antarctica exposed to near‐ambient and ambient UV‐B were 16–17% shorter than those exposed to reduced UV‐B, and this was associated with shorter epidermal cells at the leaf base and tip. Leaves on C. quitensis exposed to near‐ambient and ambient UV‐B tended to be shorter (P=0.18) and epidermal cells at the leaf base tended to be smaller than those under reduced UV‐B (P<0.10). In order to further explain reductions in leaf length, we examined leaf concentrations of insoluble (cell‐wall bound) phenylpropanoids, since it has been proposed that wall‐bound phenylpropanoids such as ferulic acid may constrain cell expansion and leaf elongation. In both species, HPLC analysis revealed that ferulic and p‐coumaric acid were major components of both insoluble and soluble phenylpropanoids. Although there were no significant differences in concentrations between UV‐B treatments, concentrations of insoluble ferulic acid in D. antarctica tended to be higher under ambient and near‐ambient UV‐B than under reduced UV‐B (P=0.17). We also examined bulk‐leaf concentrations of soluble (methanol extractable) UV‐B‐absorbing compounds and found that concentrations were higher in plants exposed to near‐ambient and ambient UV‐B than in plants exposed to reduced UV‐B. We also assessed the UV‐B‐screening effectiveness of leaves that had developed on plants at the field site with a fiber‐optic microprobe. Leaf epidermal transmittance of 300‐nm UV‐B was 4.0 and 0.6% for D. antarctica and C. quitensis, respectively, which is low compared to grasses and herbaceous dicotyledonous plants found in more temperate climates. While the leaves of Antarctic vascular plants are relatively effective at screening UV‐B, levels of UV‐B in Antarctica are sufficient to reduce leaf epidermal cell size and leaf elongation in these species, although the mechanisms for these reductions remain unclear.  相似文献   

4.
The spatial distribution of leaf elongation and adaxial epidermal cell production in leaf 6 of maize (Zea mays L. cv. Cecilia) plants grown in a growth chamber under two contrasting availabilities of P in the soil was investigated. Lower displacement velocities from 32.5 mm from leaf base and a shorter growth zone were found in low P (LP) leaves compared with control leaves. P deficiency significantly diminished maximum relative elemental growth rate and shifted its location closer to the leaf base. Cells were significantly longer in LP than in control leaves for all positions from the leaf base except at the end of the growth zone. For both treatments it took a similar time for a cell situated at the leaf base to reach the limit of the growth zone. The average length of the cell division zone was decreased by 21% in LP leaves. Significant differences were found in cell production and cell division rates from 12.5 mm from the leaf base although maximum values were similar between P treatments. A shorter zone of cell division with lower cell production rates along most of its length was the regulatory event that decreased cell production, and ultimately leaf elongation rates, in P‐deficient maize plants.  相似文献   

5.
The natural variation in quantity and quality of light modifies plant morphology, growth rate and concentration of biochemicals. The aim of two growth‐room experiments was to study the combined effects of red (R) and far‐red (FR) light and ultraviolet‐B (UV‐B) radiation on the concentrations of leaf phenolics and growth and morphology of silver birch (Betula pendula Roth) seedlings. Analysis by high‐performance liquid chromatography showed that the leaves exposed to supplemental FR relative to R contained higher concentrations of total chlorogenic acids and a cinnamic acid derivative than the leaves treated with supplemental R relative to FR. In contrast, concentration of a flavonoid, quercetin 3‐galactoside, was higher in the R + UV‐B leaves than in the FR + UV‐B leaves. The UV‐B induced production of kaempferols, chlorogenic acids and most quercetins were not modified by the R : FR ratio. Growth measurements showed that the leaf petioles and stems of FR seedlings were clearly longer than those of R seedlings, but leaf area was reduced by UV‐B radiation. Results of these experiments show that exposure of silver birch seedlings to supplemental FR compared to R leads to fast elongation growth and accumulation of phenolic acids in the leaves.  相似文献   

6.
Two maize genotypes differing in leaf elongation rate (high-LER and low-LER) were used for the investigation of the effects of nitrogen deficiency on leaf growth and development and activity of enzyme cell wall peroxidase in the leaf growth zone. Plants were grown in a growth cabinet in perlite as a substrate and watered with complete N-NO3 solution (+N) and N-NO3 deficient solution (–N). Comparison between the investigated genotypes showed that final leaf length in both N treatments was related with LER, but not with the duration of leaf elongation. Faster leaf elongation rate in high-LER compared with low-LER genotype, was associated with longer growth zone, a bigger number of cells in it, and higher cell flux rate, although cell elongation rate was similar in both genotypes. These lines of evidence indirectly indicated that leaves of the faster growing genotype were characterized by higher meristematic activity. Nitrogen deficiency reduced the flux of cells and cell elongation rate, length of cell division zone and the number of cells in whole zone, significantly for both genotypes, although duration of cell elongation was increased and final epidermal cell length was unchanged. These results showed that N deficiency reduced both cell division and cell elongation, which in turn resulted in decreased leaf length and prolonged time for leaf development. Nitrogen deficiency significantly increased both bulk and segmental cell wall peroxidase activity in the growth zone of both investigated genotypes, thus showing an interaction between leaf growth cessation and enzyme activity.  相似文献   

7.
The effect of defoliation on leaf elongation rate (LER) and on the spatial distribution of epidermal cell lengths in the leaf growth zone was studied in vegetative main tillers of perennial ryegrass (Lolium perenne L. cv Modus) grown in a controlled environment. A new material approach was used to analyse the responses of epidermal cell expansion and production during the initial, non‐steady growth phase following defoliation. The analysis involved assigning an identity to individual expanding cells, assessing the displacement and estimating the expansion of cells with assigned identity during day 1 and day 2 after defoliation. LER decreased by 34% during the first 2 d after defoliation and did not recover to the pre‐defoliation rate within the 14 day regrowth period. Decreased LER on day 1 and day 2 after defoliation was associated with (i) a decrease in the length of the leaf growth zone; (ii) a decrease in the length at which epidermal cells stopped expanding; (iii) a reduced expansion of cells at intermediate growth stages; and (iv) a reduction in cell production (i.e. division) and an associated decrease in the number of expanding cells in the growth zone. However, defoliation had no effect on the expansion of cells located in the proximal part of the growth zone. Reduced LER at 14 d after defoliation was associated with a reduced cell production rate (27% lower than the pre‐defoliation rate) and decreased final cell size ( ? 28%).  相似文献   

8.
A process‐based model integrating the effects of UV‐B radiation through epidermis, cellular DNA, and its consequences to the leaf expansion was developed from key parameters in the published literature. Enhanced UV‐B radiation‐induced DNA damage significantly delayed cell division, resulting in significant reductions in leaf growth and development. Ambient UV‐B radiation‐induced DNA damage significantly reduced the leaf growth of species with high relative epidermal absorbance at longer wavelengths and average/low pyrimidine cyclobutane dimers (CPD) photorepair rates. Leaf expansion was highly dependent on the number of CPD present in the DNA, as a result of UV‐B radiation dose, quantitative and qualitative absorptive properties of epidermal pigments, and repair mechanisms. Formation of pyrimidine‐pyrimidone (6‐4) photoproducts (6‐4PP) has no effect on the leaf expansion. Repair mechanisms could not solely prevent the UV‐B radiation interference with the cell division. Avoidance or effective shielding by increased or modified qualitative epidermal absorptance was required. Sustained increased UV‐B radiation levels are more detrimental than short, high doses of UV‐B radiation. The combination of low temperature and increased UV‐B radiation was more significant in the level of UV‐B radiation‐induced damage than UV‐B radiation alone. Slow‐growing leaves were more affected by increased UV‐B radiation than fast‐growing leaves.  相似文献   

9.
The CURLY LEAF (CLF ) gene in Arabidopsis thaliana (L.) Heynh. is required for stable repression of a floral homeotic gene, AGAMOUS in leaves and stems To clarify the function of CLF in organ development, we characterized clf mutants using an anatomical and genetic approach. The clf mutants had normal roots, hypocotyls, and cotyledons, but the foliage leaves and the stems had reduced dimensions. A decrease both in the extent of cell elongation and in the number of cells was evident in the clf mutant leaves, suggesting that the CLF gene might be involved in the division and elongation of cells during leaf morphogenesis. An analysis of the development of clf mutant leaves revealed that the period during which cell division or cell elongation occurred was of normal duration, while the rates of both cell production and cell elongation were lower than in the wild type. Two phases in the elongation of cells were also recognized from this analysis. From analysis of an angustifolia clf double mutant, we found that the two phases of elongation of leaf cells were regulated independently by each gene. Thus, the CLF gene appears to affect cell division at an earlier stage and cell elongation throughout the development of leaf primordia. Received: 19 February 1998 / Accepted: 24 March 1998  相似文献   

10.
Leaf growth in grasses is determined by the cell division and elongation rates, with the duration of cell elongation being one of the processes that is the most sensitive to salinity. Our objective was to investigate the distribution profiles of cell production, cell length and the duration of cell elongation in the growing zone of the wheat leaf during the steady growth phase. Plants were grown in loamy soil with or without 120 mmol/L NaCl in a growth chamber, and harvested at day 3 after leaf 4 emerged. Results show that the elongation rate of leaf 4 was reduced by 120 mmol/L NaCl during the steady growth phase. The distribution profile of the lengths of abaxial epidermal cells of leaf 4 during the steady growth stage shows a sigmoidal pattern along the leaf axis for both treatments. Although salinity did not affect or even increased the length of the epidermal cells in some locations in the growth zone compared to the control treatment, the final length of the epidermal cells was reduced by 14% at 120 mmol/L NaCl. Thus, we concluded that the observed reduction in the leaf elongation rate derived in part from the reduced cell division rate and either the shortened cell elongation zone or shortened duration of cell elongation. This suggests that more attention should be paid to the effects of salinity on those properties of cell production and the period of cell maturation that are related to the properties of cell wall.  相似文献   

11.
Recent studies of transgenic poplars over‐expressing the genes gsh1 and gsh2 encoding γ‐glutamylcysteine synthetase (γ‐ECS) and glutathione synthetase, respectively, provided detailed information on regulation of GSH synthesis, enzymes activities and mRNA expression. In this experiment, we studied quantitative parameters of leaves, assimilating tissues, cells and chloroplasts, mesophyll resistance for CO2 diffusion, chlorophyll and carbohydrate content in wild‐type poplar and transgenic plants over‐expressing gsh1 in the cytosol after 3 years of growth in relatively clean (control) or heavy metal‐contaminated soil in the field. Over‐expression of gsh1 in the cytosol led to a twofold increase of intrafoliar GSH concentration and influenced the photosynthetic apparatus at different levels of organisation, i.e., leaves, photosynthetic cells and chloroplasts. At the control site, transgenic poplars had a twofold smaller total leaf area per plant and a 1.6‐fold leaf area per leaf compared to wild‐type controls. Annual aboveground biomass gain was reduced by 50% in the transgenic plants. The reduction of leaf area of the transformants was accompanied by a significant decline in total cell number per leaf, indicating suppression of cell division. Over‐expression of γ‐ECS in the cytosol also caused changes in mesophyll structure, i.e., a 20% decrease in cell and chloroplast number per leaf area, but also an enhanced volume share of chloroplasts and intercellular airspaces in the leaves. Transgenic and wild poplars did not exhibit differences in chlorophyll and carotenoid content of leaves, but transformants had 1.3‐fold fewer soluble carbohydrates. Cultivation on contaminated soil caused a reduction of palisade cell volume and chloroplast number, both per cell and leaf area, in wild‐type plants but not in transformants. Biomass accumulation of wild‐type poplars decreased in contaminated soil by more than 30‐fold, whereas transformants showed a twofold decrease compared to the control site. Thus, poplars over‐expressing γ‐ECS in the cytosol were more tolerant to heavy metal stress under field conditions than wild‐type plants according to the parameters analysed. Correlation analysis revealed strong dependence of cell number per leaf area unit, chloroplast parameters and mesophyll resistance with the GSH level in poplar leaves.  相似文献   

12.
Mechanisms of leaf tooth formation in Arabidopsis   总被引:1,自引:0,他引:1  
Serration found along leaf margins shows species‐specific characters. Whereas compound leaf development is well studied, the process of serration formation is largely unknown. To understand mechanisms of serration development, we investigated distinctive features of cells that could give rise to tooth protrusion in the simple‐leaf plant Arabidopsis. After the emergence of a tooth, marginal cells, except for cells at the sinuses and tips, started to elongate rapidly. Localized cell division seemed to keep cells at the sinus smaller, rather than halt cell elongation. As leaves matured, the marginal cell number between teeth became similar in any given tooth. These results suggest that teeth are formed by repetition of an unknown mechanism that spatially monitors cell number and regulates cell division. We then examined the role of CUP‐SHAPED COTYLEDON 2 (CUC2) in serration development. cuc2‐3 forms fewer hydathodes and auxin maxima, visualized by DR5rev::GFP, at the leaf margin, suggesting that CUC2 patterns serration through the regulation of auxin. In contrast to a previous interpretation, comparison of leaf outlines revealed that CUC2 promotes outgrowth of teeth rather than suppression of growth at the sinuses. We found that mutants with increased CUC2 expression form ectopic tissues and mis‐express SHOOT MERISTEMLESS (STM) at the sinus between the enhanced teeth. Similar but infrequent STM expression was found in the wild type, indicating STM involvement in the serration of simple leaves. Our study provides insights into the morphological and molecular mechanisms for leaf development and tooth formation, and highlights similarities between serration and compound leaf development.  相似文献   

13.
We previously demonstrated that solar ultraviolet‐B (UV‐B) radiation levels in high altitude vineyards improve berry quality in Vitis vinifera cv. Malbec, but also reduce berry size and yield, possibly as a consequence of increased oxidative damage and growth reductions (lower photosynthesis). The defense mechanisms toward UV‐B signal and/or evoked damage promote production of antioxidant secondary metabolites instead of primary metabolites. Purportedly, the UV‐B effects will depend on tissues developmental stage and interplay with other environmental conditions, especially stressful situations. In this work, grapevines were exposed to high solar UV‐B (+UV‐B) and reduced (by filtering) UV‐B (?UV‐B) treatments during three consecutive seasons, and the effects of UV‐B, developmental stages and seasons on the physiology were studied, i.e. growth, tissues morphology, photosynthesis, photoprotective pigments, proline content and antioxidant capacity of leaves. The +UV‐B reduced photosynthesis and stomatal conductance, mainly through limitation in gas exchange, reducing plant's leaf area, net carbon fixation and growth. The +UV‐B augmented leaf thickness, and also the amounts of photoprotective pigments and proline, thereby increasing the antioxidant capacity of leaves. The defense mechanisms triggered by + UV‐B reduced lipid peroxidation, but they were insufficient to protect the photosynthetic pigments per leaf dry weight basis. The +UV‐B effects depend on tissues developmental stage and interplay with other environmental conditions such as total radiation and air temperatures.  相似文献   

14.
《Journal of bryology》2013,35(3):185-196
Abstract

Leaves at the apex of a mature Aphanoregma patens (Hedw.) Lindb. (Physcomitrella patens (Hedw.) Bruch Schimp. in B.S.G.) gametophore differ markedly in size and form from those at its base. To determine how these differences are produced during development, we first examined qualitative and quantitative differences between successive leaves along the stem and among leaves at different developmental stages. Differences between successive leaves were slight and cumulative. Local changes in cell number and size combined to produce a regularly shaped and approximately bilaterally symmetrical leaf suggesting that cell division and cell expansion are regionally regulated and coordinated at the organ level. The midrib and marginal teeth are discrete characters, which were prefigured by changes in cell shape in leaves that lacked these characters. In leaf primordia, cell proliferation was responsible for most of the changes in leaf form and size early in development and may have continued as cell expansion took over as the primary contributor to leaf growth and morphogenesis. Thus, leaf heteroblasty in Physcomitrella probably results from modulation of a single developmental programme by external and/or internal forces, which alter progressively in intensity as a gametophore grows. We applied exogenous cytokinin and auxin separately to growing cultures to explore their effects on leaf growth. Cytokinin and auxin stimulated leaf cell division and leaf cell elongation, respectively. Also, young upper leaves of gametophores exposed to exogenous auxin closely resembled basal leaves of untreated plants. Therefore, endogenous cytokinins and auxins may be among the modulating internal forces involved in leaf morphogenesis and the establishment of leaf heteroblasty.  相似文献   

15.
Wheat leaves (Triticum aestivum L.) elongated 50% more slowlywhen plants were grown in soils with high mechanical resistanceto penetration (Rs. The profiles of epidermal cell lengths alongthe growth zone of expanding leaves and the locations of newlyformed walls were recorded in order to compare the kineticsof elongation and partitioning of both meristematic and non-meristematiccells. In leaf 5, which completely developed under stress, highRs, did not affect the flux of mature cells through the elongationzone; leaf elongation was reduced only because these cells wereshorter. This reduced size reflected a reduction in cell lengthat partitioning, associated with shorter cycling time. The relativerates of cell elongation before and after partitioning wereunchanged. Cell fluxes were similar because the population ofmeristematic cells was reduced, offsetting their increased partitioningrate. In contrast, in leaf 1, high Rs, had no effect on thenumber of dividing cells; elongation rate was reduced becauseof slower relative cell expansion rate and slower cell partitioningrate. These differences could reflect differences in the stageat which successive leaves perceived root stress and also time-dependentchanges in the responsiveness of leaf development to stress-inducedroot signals or in the nature of these signals. The data reveal that cell cycling time may in fact be decreasedby unfavourable growth conditions and is not directly relatedto cell expansion rates; they also show that the elongationrate of meristematic cells is partly independently controlledfrom that of non-meristematic cells. Key words: Wheat, kinematics of leaf expansion, cell partitioning, cell elongation, root impedance  相似文献   

16.
White clover (Trifolium repens L.) is experiencing increased levels of ultraviolet‐B (UV‐B) radiation in temperate pastures due to the depletion of the stratospheric ozone layer. Based on 17 morphological, morphogenetic and physiological attributes, this study analysed the consequences of enhanced UV‐B on 26 white clover populations using principal components analysis (PCA). After 18 d of exposure to 13·3 kJ m ? 2 d ? 1 UV‐B in controlled environments, UV‐B significantly decreased above‐ground and below‐ground plant growth attributes, epidermal cell surface area and maximum quantum efficiency of photosystem II photochemistry (Fv/Fm). Aspects of cell division and cell expansion both were negatively affected by UV‐B. Stomatal density, specific leaf mass, root‐to‐shoot ratio and levels of UV‐B‐absorbing compounds increased in response to UV‐B. In the multivariate analysis, the main dimension of UV‐B sensitivity was characterized by changes in plant growth attributes. Alterations in partitioning within and between plant organs constituted a secondary tier of UV‐B responsiveness. Plant characteristics related to UV‐B tolerance included lower growth rate, smaller epidermal cell surface area and higher UV‐B‐induced levels of UV‐B‐absorbing compounds. The results suggest overall UV‐B tolerance for slower‐growing populations from less productive habitats with higher natural UV‐B irradiance.  相似文献   

17.
BACKGROUND AND AIMS: Growth and development of plant organs, including leaves, depend on cell division and expansion. Leaf size is increased by greater cell ploidy, but the mechanism of this effect is poorly understood. Therefore, in this study, the role of cell division and expansion in the increase of leaf size caused by polyploidy was examined by comparing various cell parameters of the mesophyll layer of developing leaves of diploid and autotetraploid cultivars of two grass species, Lolium perenne and L. multiflorum. METHODS: Three cultivars of each ploidy level of both species were grown under pot conditions in a controlled growth chamber, and leaf elongation rate and the cell length profile at the leaf base were measured on six plants in each cultivar. Cell parameters related to division and elongation activities were calculated by a kinematic method. KEY RESULTS: Tetraploid cultivars had faster leaf elongation rates than did diploid cultivars in both species, resulting in longer leaves, mainly due to their longer mature cells. Epidermal and mesophyll cells differed 20-fold in length, but were both greater in the tetraploid cultivars of both species. The increase in cell length of the tetraploid cultivars was caused by a faster cell elongation rate, not by a longer period of cell elongation. There were no significant differences between cell division parameters, such as cell production rate and cell cycle time, in the diploid and tetraploid cultivars. CONCLUSION: The results demonstrated clearly that polyploidy increases leaf size mainly by increasing the cell elongation rate, but not the duration of the period of elongation, and thus increases final cell size.  相似文献   

18.
Plant morphological and physiological traits exhibit plasticity in response to light intensity. Leaf thickness is enhanced under high light (HL) conditions compared with low light (LL) conditions through increases in both cell number and size in the dorsoventral direction; however, the regulation of such phenotypic plasticity in leaf thickness (namely, sun‐ or shade‐leaf formation) during the developmental process remains largely unclear. By modifying observation techniques for tiny leaf primordia in Arabidopsis thaliana, we analysed sun‐ and shade‐leaf development in a time‐course manner and found that the process of leaf thickening can be divided into early and late phases. In the early phase, anisotropic cell elongation and periclinal cell division on the adaxial side of mesophyll tissue occurred under the HL conditions used, which resulted in the dorsoventral growth of sun leaves. Anisotropic cell elongation in the palisade tissue is triggered by blue‐light irradiation. We discovered that anisotropic cell elongation processes before or after periclinal cell division were differentially regulated independent of or dependent upon signalling through blue‐light receptors. In contrast, during the late phase, isotropic cell expansion associated with the endocycle, which determined the final leaf thickness, occurred irrespective of the light conditions. Sucrose production was high under HL conditions, and we found that sucrose promoted isotropic cell expansion and the endocycle even under LL conditions. Our analyses based on this method of time‐course observation addressed the developmental framework of sun‐ and shade‐leaf formation.  相似文献   

19.
The effects of elevated UV‐B (280–315 nm) radiation on the long‐term decomposition of Quercus robur leaf litter were assessed at an outdoor facility in the UK by exposing saplings to elevated UV‐B radiation (corresponding to a 30% increase above the ambient level of erythemally weighted UV‐B, equivalent to that resulting from a c. 18% reduction in ozone column) under arrays of cellulose diacetate‐filtered fluorescent UV‐B lamps that also produced UV‐A radiation (315–400 nm). Saplings were also exposed to elevated UV‐A radiation alone under arrays of polyester‐filtered fluorescent lamps and to ambient solar radiation under arrays of nonenergized lamps. After 8 months of irradiation, abscised leaves were placed into litter bags and allowed to decompose in the litter layer of a mixed deciduous woodland for 4.08 years. The dry weight loss of leaf litter from saplings irradiated with elevated UV‐B and UV‐A radiation during growth was 17% greater than that of leaf litter irradiated with elevated UV‐A radiation alone. Annual fractional weight loss of litter (k), and the estimated time taken for 95% of material to decay (3/k) were respectively increased and decreased by 27% for leaf litter exposed during growth to elevated UV‐B and UV‐A radiation, relative to that exposed to UV‐A alone. The present data corroborate those from a previous study indicating that UV‐B radiation applied during growth accelerates the subsequent decomposition of Q. robur leaf litter in soil, but indicate that this effect persists for over four years after abscission.  相似文献   

20.
Epidermal Cell Division and the Coordination of Leaf and Tiller Development   总被引:7,自引:2,他引:5  
Initiation and development of grass leaves and tillers are oftendescribed individually with little attention to possible interrelationshipsamong organs. In order to better understand these interrelationships,this research examined epidermal cell division during developmentaltransitions at the apical meristem of tall fescue (Festuca arundinaceaSchreb.). Ten seedlings were harvested each day for a 9-d period,and lengths of main shoot leaves and primary tillers were measured.In addition, numbers and lengths of epidermal cells were determinedfor 0·5 mm segments along the basal 3 mm of each leafand tiller. Primordia development and onset of rapid leaf elongationwere characterized by an increase in the number of cells perepidermal file with mean cell length remaining near 20 µmper cell. After the leaf had lengthened to 1-1·5 mm,cells near the leaf tip ceased dividing and increased in length,at which time leaf elongation rate increased rapidly. Liguleformation, marking the boundary between blade and sheath cells,occurred prior to leaf tip emergence above the whorl of oldersheaths, while the earliest differentiation between blade andsheath cells probably began when leaves were < 1 mm long.Major transitions in leaf and tiller development appeared tobe synchronized among at least three adjacent nodes. At theoldest node, cessation of cell division in the leaf sheath wasaccompanied by initiation of cell division and elongation inthe associated tiller bud. At the next younger node the ligulewas being initiated, while at the youngest node cell divisioncommenced in the leaf primordium, as elongation of a new leafblade began. This synchronization of events suggests a key rolefor the cell division process in regulating leaf and tillerdevelopment.Copyright 1994, 1999 Academic Press Festuca arundinacea Schreb., tall fescue, cell division, leaf initiation, tillering, ligule development  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号