共查询到20条相似文献,搜索用时 15 毫秒
1.
Dawn Field Peter Sterk Renzo Kottmann J. Wim De Smet Linda Amaral-Zettler Guy Cochrane James R. Cole Neil Davies Peter Dawyndt George M. Garrity Jack A. Gilbert Frank Oliver Gl?ckner Lynette Hirschman Hans-Peter Klenk Rob Knight Nikos Kyrpides Folker Meyer Ilene Karsch-Mizrachi Norman Morrison Robert Robbins Inigo San Gil Susanna Sansone Lynn Schriml Tatiana Tatusova Dave Ussery Pelin Yilmaz Owen White John Wooley Gregory Caporaso 《Standards in genomic sciences》2014,9(3):599-601
2.
3.
4.
Field D Garrity GM Sansone SA Sterk P Gray T Kyrpides N Hirschman L Glöckner FO Kottmann R Angiuoli S White O Dawyndt P Thomson N Gil IS Morrison N Tatusova T Mizrachi I Vaughan R Cochrane G Kagan L Murphy S Schriml L;Genomic Standards Consortium 《Omics : a journal of integrative biology》2008,12(2):109-113
5.
Glass E Meyer F Gilbert JA Field D Hunter S Kottmann R Kyrpides N Sansone S Schriml L Sterk P White O Wooley J 《Standards in genomic sciences》2010,3(3):225-231
This report summarizes the proceedings of the 10th workshop of the Genomic Standards Consortium (GSC), held at Argonne National Laboratory, IL, USA. It was the second GSC workshop to have open registration and attracted over 60 participants who worked together to progress the full range of projects ongoing within the GSC. Overall, the primary focus of the workshop was on advancing the M5 platform for next-generation collaborative computational infrastructures. Other key outcomes included the formation of a GSC working group focused on MIGS/MIMS/MIENS compliance using the ISA software suite and the formal launch of the GSC Developer Working Group. Further information about the GSC and its range of activities can be found at http://gensc.org/. 相似文献
6.
Kyrpides N Field D Sterk P Kottmann R Glöckner FO Hirschman L Garrity GM Cochrane G Wooley J 《Standards in genomic sciences》2010,3(1):93-96
This report summarizes the proceedings of the 8th meeting of the Genomic Standards Consortium held at the Department of Energy Joint Genome Institute in Walnut Creek, CA, USA on September 9-11, 2009. This three-day workshop marked the maturing of Genomic Standards Consortium from an informal gathering of researchers interested in developing standards in the field of genomic and metagenomics to an established community with a defined governance mechanism, its own open access journal, and a family of established standards for describing genomes, metagenomes and marker studies (i.e. ribosomal RNA gene surveys). There will be increased efforts within the GSC to reach out to the wider scientific community via a range of new projects. Further information about the GSC and its activities can be found at http://gensc.org/. 相似文献
7.
Davidsen T Madupu R Sterk P Field D Garrity G Gilbert J Glöckner FO Hirschman L Kolker E Kottmann R Kyrpides N Meyer F Morrison N Schriml L Tatusova T Wooley J 《Standards in genomic sciences》2010,3(3):216-224
This report summarizes the proceedings of the 9th workshop of the Genomic Standards Consortium (GSC), held at the J. Craig Venter Institute, Rockville, MD, USA. It was the first GSC workshop to have open registration and attracted over 90 participants. This workshop featured sessions that provided overviews of the full range of ongoing GSC projects. It included sessions on Standards in Genomic Sciences, the open access journal of the GSC, building standards for genome annotation, the M5 platform for next-generation collaborative computational infrastructures, building ties with the biodiversity research community and two discussion panels with government and industry participants. Progress was made on all fronts, and major outcomes included the completion of the MIENS specification for publication and the formation of the Biodiversity working group. 相似文献
8.
Field D Glöckner FO Garrity GM Gray T Sterk P Cochrane G Vaughan R Kolker E Kottmann R Kyrpides N Angiuoli S Dawyndt P Guralnick R Goldstein P Hall N Hirschman L Kravitz S Lister AL Markowitz V Thomson N Whetzel T 《Omics : a journal of integrative biology》2008,12(2):101-108
This meeting report summarizes the proceedings of the "eGenomics: Cataloguing our Complete Genome Collection IV" workshop held June 6-8, 2007, at the National Institute for Environmental eScience (NIEeS), Cambridge, United Kingdom. This fourth workshop of the Genomic Standards Consortium (GSC) was a mix of short presentations, strategy discussions, and technical sessions. Speakers provided progress reports on the development of the "Minimum Information about a Genome Sequence" (MIGS) specification and the closely integrated "Minimum Information about a Metagenome Sequence" (MIMS) specification. The key outcome of the workshop was consensus on the next version of the MIGS/MIMS specification (v1.2). This drove further definition and restructuring of the MIGS/MIMS XML schema (syntax). With respect to semantics, a term vetting group was established to ensure that terms are properly defined and submitted to the appropriate ontology projects. Perhaps the single most important outcome of the workshop was a proposal to move beyond the concept of "minimum" to create a far richer XML schema that would define a "Genomic Contextual Data Markup Language" (GCDML) suitable for wider semantic integration across databases. GCDML will contain not only curated information (e.g., compliant with MIGS/MIMS), but also be extended to include a variety of data processing and calculations. Further information about the Genomic Standards Consortium and its range of activities can be found at http://gensc.org. 相似文献
9.
10.
Field D Sterk P Kyrpides N Kottmann R Glöckner FO Hirschman L Garrity GM Wooley J Gilna P 《Standards in genomic sciences》2009,1(1):68-71
This report summarizes the proceedings of the 6th and 7th workshops of the Genomic Standards Consortium (GSC), held back-to-back in 2008. GSC 6 focused on furthering the activities of GSC working groups, GSC 7 focused on outreach to the wider community. GSC 6 was held October 10-14, 2008 at the European Bioinformatics Institute, Cambridge, United Kingdom and included a two-day workshop focused on the refinement of the Genomic Contextual Data Markup Language (GCDML). GSC 7 was held as the opening day of the International Congress on Metagenomics 2008 in San Diego California. Major achievements of these combined meetings included an agreement from the International Nucleotide Sequence Database Consortium (INSDC) to create a "MIGS" keyword for capturing "Minimum Information about a Genome Sequence" compliant information within INSDC (DDBJ/EMBL /Genbank) records, launch of GCDML 1.0, MIGS compliance of the first set of "Genomic Encyclopedia of Bacteria and Archaea" project genomes, approval of a proposal to extend MIGS to 16S rRNA sequences within a "Minimum Information about an Environmental Sequence", finalization of plans for the GSC eJournal, "Standards in Genomic Sciences" (SIGS), and the formation of a GSC Board. Subsequently, the GSC has been awarded a Research Co-ordination Network (RCN4GSC) grant from the National Science Foundation, held the first SIGS workshop and launched the journal. The GSC will also be hosting outreach workshops at both ISMB 2009 and PSB 2010 focused on "Metagenomics, Metadata and MetaAnalysis" (M(3)). Further information about the GSC and its range of activities can be found at http://gensc.org, including videos of all the presentations at GSC 7. 相似文献
11.
12.
Through a newly established Research Coordination Network for the Genomic Standards Consortium (RCN4GSC), the GSC will continue its leadership in establishing and integrating genomic standards through community-based efforts. These efforts, undertaken in the context of genomic and metagenomic research aim to ensure the electronic capture of all genomic data and to facilitate the achievement of a community consensus around collecting and managing relevant contextual information connected to the sequence data. The GSC operates as an open, inclusive organization, welcoming inspired biologists with a commitment to community service. Within the collaborative framework of the ongoing, international activities of the GSC, the RCN will expand the range of research domains engaged in these standardization efforts and sustain scientific networking to encourage active participation by the broader community. The RCN4GSC, funded for five years by the US National Science Foundation, will primarily support outcome-focused working meetings and the exchange of early-career scientists between GSC research groups in order to advance key standards contributions such as GCDML. Focusing on the timely delivery of the extant GSC core projects, the RCN will also extend the pioneering efforts of the GSC to engage researchers active in developing ecological, environmental and biodiversity data standards. As the initial goals of the GSC are increasingly achieved, promoting the comprehensive use of effective standards will be essential to ensure the effective use of sequence and associated data, to provide access for all biologists to all of the information, and to create interdisciplinary opportunities for discovery. The RCN will facilitate these implementation activities through participation in major scientific conferences and presentations on scientific advances enabled by community usage of genomic standards. 相似文献
13.
Neil Davies Dawn Field Linda Amaral-Zettler Katharine Barker Mesude Bicak Sarah Bourlat Jonathan Coddington John Deck Alexei Drummond Jack A. Gilbert Frank Oliver Gl?ckner Renzo Kottmann Chris Meyer Norman Morrison Matthias Obst Robert Robbins Lynn Schriml Peter Sterk Steven Stones-Havas 《Standards in genomic sciences》2014,9(3):1236-1250
This report summarizes the proceedings of the 14th workshop of the Genomic Standards Consortium (GSC) held at the University of Oxford in September 2012. The primary goal of the workshop was to work towards the launch of the Genomic Observatories (GOs) Network under the GSC. For the first time, it brought together potential GOs sites, GSC members, and a range of interested partner organizations. It thus represented the first meeting of the GOs Network (GOs1). Key outcomes include the formation of a core group of “champions” ready to take the GOs Network forward, as well as the formation of working groups. The workshop also served as the first meeting of a wide range of participants in the Ocean Sampling Day (OSD) initiative, a first GOs action. Three projects with complementary interests – COST Action ES1103, MG4U and Micro B3 – organized joint sessions at the workshop. A two-day GSC Hackathon followed the main three days of meetings. 相似文献
14.
JA Gilbert Y Bao H Wang SA Sansone SC Edmunds N Morrison F Meyer LM Schriml N Davies P Sterk J Wilkening GM Garrity D Field R Robbins DP Smith I Mizrachi C Moreau 《Standards in genomic sciences》2012,6(2):276-286
This report details the outcome of the 13(th) Meeting of the Genomic Standards Consortium. The three-day conference was held at the Kingkey Palace Hotel, Shenzhen, China, on March 5-7, 2012, and was hosted by the Beijing Genomics Institute. The meeting, titled From Genomes to Interactions to Communities to Models, highlighted the role of data standards associated with genomic, metagenomic, and amplicon sequence data and the contextual information associated with the sample. To this end the meeting focused on genomic projects for animals, plants, fungi, and viruses; metagenomic studies in host-microbe interactions; and the dynamics of microbial communities. In addition, the meeting hosted a Genomic Observatories Network session, a Genomic Standards Consortium biodiversity working group session, and a Microbiology of the Built Environment session sponsored by the Alfred P. Sloan Foundation. 相似文献
15.
16.
17.
18.
Catherine Metayer Elizabeth Milne Jacqueline Clavel Claire Infante-Rivard Eleni Petridou Malcolm Taylor Joachim Schüz Logan G. Spector John D. Dockerty Corrado Magnani Maria S. Pombo-de-Oliveira Daniel Sinnett Michael Murphy Eve Roman Patricia Monge Sameera Ezzat Beth A. Mueller Michael E. Scheurer Patricia A. Buffler 《Cancer epidemiology》2013,37(3):336-347
Background: Acute leukemia is the most common cancer in children under 15 years of age; 80% are acute lymphoblastic leukemia (ALL) and 17% are acute myeloid leukemia (AML). Childhood leukemia shows further diversity based on cytogenetic and molecular characteristics, which may relate to distinct etiologies. Case–control studies conducted worldwide, particularly of ALL, have collected a wealth of data on potential risk factors and in some studies, biospecimens. There is growing evidence for the role of infectious/immunologic factors, fetal growth, and several environmental factors in the etiology of childhood ALL. The risk of childhood leukemia, like other complex diseases, is likely to be influenced both by independent and interactive effects of genes and environmental exposures. While some studies have analyzed the role of genetic variants, few have been sufficiently powered to investigate gene–environment interactions. Objectives: The Childhood Leukemia International Consortium (CLIC) was established in 2007 to promote investigations of rarer exposures, gene–environment interactions and subtype-specific associations through the pooling of data from independent studies. Methods: By September 2012, CLIC included 22 studies (recruitment period: 1962–present) from 12 countries, totaling approximately 31 000 cases and 50 000 controls. Of these, 19 case–control studies have collected detailed epidemiologic data, and DNA samples have been collected from children and child–parent trios in 15 and 13 of these studies, respectively. Two registry-based studies and one study comprising hospital records routinely obtained at birth and/or diagnosis have limited interview data or biospecimens. Conclusions: CLIC provides a unique opportunity to fill gaps in knowledge about the role of environmental and genetic risk factors, critical windows of exposure, the effects of gene–environment interactions and associations among specific leukemia subtypes in different ethnic groups. 相似文献
19.
The purpose of this table is to provide the community with a citable record of publications of ongoing genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publications added to subsequent versions of this list are invited to provide the bibliographic data for such references to the SIGS editorial office.
Phylum Crenarchaeota
- Pyrobaculum strain 1860, sequence accession [ CP0030981]
Phylum Deinococcus-Thermus
- “Thermus sp.” Strain CCB_US3_UF1, sequence accession (chromosome), CP003126 (plasmid) [ CP0031272]
Phylum Proteobacteria
- “Achromobacter arsenitoxydans” SY8, sequence accession [ AGUF000000003]
- Acidovorax sp. Strain NO1, sequence accession [ AGTS000000004]
- Acinetobacter baumannii AB4857, sequence accession [ AHAG000000005]
- Acinetobacter baumannii AB5075, sequence accession [ AHAH000000005]
- Acinetobacter baumannii AB5256, sequence accession [ AHAI000000005]
- Acinetobacter baumannii AB5711, sequence accession [ AHAJ000000005]
- Aeromonas salmonicida, sequence accession [ AGVO000000006]
- Aggregatibacter actinomycetemcomitans RHAA1, sequence accession [ AHGR000000007]
- Agrobacterium tumefaciens 5A, sequence accession [ AGVZ000000008]
- Azoarcus sp. Strain KH32C, sequence accession , AP012304 [ AP0123059]
- Burkholderia sp. Strain YI23, sequence accession (Chromosome 1), CP003087 (Chromosome 2), CP003088 (Chromosome 3), CP003089 (plasmid BYI23_D), CP003090 (plasmid BYI23_E) CP003091 (plasmid BYI23_F) [ CP00309210]
- Brucella suis VBI22, sequence accession , CP003128 [ CP00312911]
- Comamonas testosteroni ATCC 11996, sequence accession [ AHIL0000000012]
- “Commensalibacter intestini” A911T, sequence accession [ AGFR0000000013]
- Edwardsiella ictaluri, sequence accession [ CP001600.114]
- Enterobacter cloacae subsp. dissolvens SDM, sequence accession [ AGSY0000000015]
- “Gluconobacter morbifer” G707T, sequence accession [ AGQV0000000016]
- Legionella dumoffii TEX-KL, sequence accession [ AGVT0000000017]
- Legionella dumoffii NY-23, sequence accession [ AGVU0000000017]
- Legionella pneumophila serogroup 12 Strain 570-CO-H, sequence accession [ CP00319218]
- Marinobacterium stanieri S30, sequence accession [ AFPL0000000019]
- “Marinobacter manganoxydans” MnI7-9, sequence accession [ CP001978 to CP00198020]
- Mesorhizobium alhagi CCNWXJ12-2T, sequence accession [ AHAM0000000021]
- Mesorhizobium amorphae, sequence accession [ AGSN0000000022]
- Methylomicrobium alcaliphilum 20Z, sequence accession and FO082060 [ FO08206123]
- Mitsuaria sp. Strain H24L5A, sequence accession [ CAFG01000001 to CAFG0100060724]
- Novosphingobium pentaromativorans US6-1, sequence accession [ AGFM0000000025]
- Pantoea ananatis B1-9, sequence accession [ CAEI01000001 to CAEI0100016926]
- Pantoea ananatis LMG 5342, sequence accession (chromosome), HE617160 (pPANA10) [ HE61716127]
- Pantoea ananatis Strain PA13, sequence accession and CP003085 [ CP00308628]
- Pseudomonas aeruginosa, sequence accession [ AFXI0000000029]
- Pseudomonas aeruginosa, sequence accession [ AFXJ0000000029]
- Pseudomonas aeruginosa, sequence accession [ AFXK0000000029]
- Pseudomonas chlororaphis GP72, sequence accession [ AHAY0100000030]
- Pseudomonas fluorescens F113, sequence accession [ CP00315031]
- Pseudomonas fluorescens Wayne 1R, sequence accession [ CADX01000001 to CADX0100009032]
- Pseudomonas fluorescens Wood1R, sequence accession to CAFF01000001 [ CAFF0100143732]
- Pseudomonas psychrotolerans L19, sequence accession [ AHBD0000000033]
- Pseudoalteromonas rubra ATCC 29570T, sequence accession [ AHCD0000000034]
- Pseudomonas stutzeri SDM-LAC, sequence accession [ AGSX0000000035]
- Pseudoxanthomonas spadix BD-a59, sequence accession [ CP00309336]
- Rickettsia slovaca, sequence accession [ CP00242837]
- Salmonella enterica serovar Pullorum RKS5078, sequence accession [ CP00304738]
- Sinorhizobium meliloti CCNWSX0020, sequence accession [ AGVV0000000039]
- Sphingobium sp. Strain SYK-6, sequence accession and AP012222 [ AP01222340]
- Sphingomonas sp. Strain PAMC 26605, sequence accession [ AHIS0000000041]
- Stenotrophomonas maltophilia RR-10, sequence accession [ AGRB0000000042]
- Strain HIMB30, sequence accession [ AGIG0000000043]
- Taylorella equigenitalis, sequence accession [ CP00305944]
- Vibrio campbellii DS40M4, sequence accession [ AGIE0000000045]
- Vibrio fischeri SR5, sequence accession [ AHIH0000000046]
- Yersinia enterocolitica, sequence accession [ AGQO0000000047]
Phylum Tenericutes
- Candidatus Mycoplasma haemominutum, sequence accession [ HE61325448]
- Mycoplasma haemocanis strain Illinois, sequence accession [ CP00319949]
- Mycoplasma iowae, sequence accession [ AGFP0000000050]
- Mycoplasma pneumoniae Type 2a Strain 309, sequence accession [ AP01230351]
Phylum Firmicutes
- Bacillus cereus F837/76, sequence accession (chromosome) CP003187 (pF837_55kb), CP003188 (pF837_10kb) [ CP00318952]
- Brevibacillus laterosporus Strain GI-9, sequence accession [ CAGD01000001 to CAGD0100006153]
- Clostridium sporogenes PA 3679, sequence accession [ AGAH0000000054]
- Enterococcus mundtii CRL1656, sequence accession [ AFWZ00000000.155]
- Geobacillus thermoleovorans CCB_US3_UF5, sequence accession [ CP00312556]
- Lactobacillus curvatus Strain CRL705, sequence accession [ AGBU0100000057]
- Lactobacillus rhamnosus ATCC 8530, sequence accession [ CP00309458]
- Lactobacillus rhamnosus R0011, sequence accession [ AGKC0000000059]
- Lactococcus garvieae TB25, sequence accession [ AGQX0100000060]
- Lactococcus garvieae LG9, sequence accession [ AGQY0100000060]
- Lactococcus lactis subsp. cremoris A76, sequence accession (chromosome), CP003132 (pQA505), CP003136 (PQA518), CP003135 (pQA549), CP003134 (pQA554) [ CP00313361]
- Leuconostoc citreum LBAE C10, sequence accession [ CAGE0000000062]
- Leuconostoc citreum LBAE C11, sequence accession [ CAGF0000000062]
- Leuconostoc citreum LBAE E16, sequence accession [ CAGG0000000062]
- Leuconostoc mesenteroides subsp. mesenteroides Strain J18, sequence accession [ CP00310163]
- Paenibacillus peoriae Strain KCTC 3763T, sequence accession [ AGFX0000000064]
- Pediococcus acidilactici MA18/5M, sequence accession [ AGKB0000000065]
- Pediococcus claussenii ATCC BAA-344T, sequence accession (chromosome), CP003137 (pPECL-1), CP003138 (pPECL-2), CP003139 (pPECL-3), CP003140 (pPECL-4), CP003141 (pPECL-5), CP003142 (pPECL-6), CP003143 (pPECL-7), CP003144 (pPECL-8) [ CP00314566]
- Staphylococcus aureus M013, sequence accession [ CP00316667]
- Staphylococcus aureus subsp. aureus TW20, sequence accession [ FN43359668]
- Weissella confusa LBAE C39-2, sequence accession [ CAGH0000000069]
Phylum Actinobacteria
- Corynebacterium casei, sequence accession [ CAFW01000001 to CAFW0100010670]
- Corynebacterium glutamicum, sequence accession [ AGQQ0000000071]
- Leucobacter chromiiresistens, sequence accession [ AGCW0000000072]
- Mycobacterium abscessus, sequence accession [ AGQU0000000073]
- Propionibacterium acnes ST9, sequence accession [ CP00319574]
- Propionibacterium acnes ST22, sequence accession [ CP00319674]
- Propionibacterium acnes ST27, sequence accession [ CP00319774]
- Saccharomonospora azurea SZMC 14600, sequence accession [ AHBX0000000075]
- Streptomyces sp. Strain TOR3209, sequence accession [ AGNH0000000076]
- Streptomyces sp. Strain W007, sequence accession [ AGSW0000000077]
Phylum Spirochaetes
- Borrelia valaisiana VS116, sequence accession (chromosome), ABCY02000001 (plasmid Ip17), CP001439 (Ip25), CP001437 (plasmid Ip 28-3), CP001440 (plasmid Ip28-8), CP001442 (Ip 36), CP001436 (plasmid Ip 54), CP001433 (plasmid cp9), CP001438 (plasmid cp26), CP001432 (plasmid cp32-5), CP001441 (plasmid cp32-7), CP001434 (plasmid cp32-10) [ CP00143578]
- “Borrelia bissettii” DN127, sequence accession (chromosome), CP002746 (plasmid Ip12), CP002756 (plasmid Ip25), CP002757 (plasmid 28-3), CP002758 (plasmid Ip 28-4), CP002759 (Ip28-7), CP002760 (plasmid Ip54), CP002761 (plasmid Ip56), CP002762 (plasmid cp9), CP002755 (plasmid cp26), CP002747 (plasmid cp32-3), CP002749 (plasmid cp32-4), CP002750 (plasmid 32-5), CP002751 (plasmid cp32-6), CP002752 (plasmid cp32-7), CP0027554 (plasmid cp32-9), CP002753 (plasmid cp32-11) [ CP00274878]
- Borrelia spielmanii A14S, sequence accession (chromosome), ABKB02000001 (plasmid Ip17), CP001468 (Ip28-3), CP001471 (plasmid Ip28-4), CP001470 (plasmid Ip28-2), CP001465 (plasmid Ip36), CP001466 (plasmid Ip38), CP001464 (plasmid Ip54), CP001469, ABKB02000016 (plasmid cp9), ABKB02000020 (plasmid cp26), CP001467 (plasmid cp32-3), ABKB02000026 (plasmid 32-5), ABKB02000031 (plasmid cp32-12), ABKB02000021 (unidentified) [ ABKB0200001478]
Non-Bacterial genomes
- Aspergillus flavus, sequence accession [ GSE3217779]
- Bacteriophage SPN3UB, sequence accession [ JQ28802180]
- Bamboo mitochondria, sequence accession [ JQ235166 to JQ23517981]
- Boea hygrometrica chloroplast, sequence accession [ JN10781182]
- Boea hygrometrica mitochondrial, sequence accession [ JN10781282]
- Canine Picornavirus, sequence accession [ JN83135683]
- Chandipura virus (CHPV) CIN0327, sequence accession [ GU212856.184]
- Chandipura virus (CHPV) CIN0451, sequence accession [ GU212857.184]
- Chandipura virus (CHPV) CIN0751, sequence accession [ GU212858.184]
- Chandipura virus (CHPV) CIN0755, sequence accession [ GU190711.184]
- Chinese Porcine Parvovirus Strain PPV2010, sequence accession [ JN87244885]
- Common midwife toad megavirus, sequence accession [ JQ23122286]
- Dengue Virus Serotype 4, sequence accession [ JN98381387]
- Duck Tembusu Virus, sequence accession [ JF27048088]
- Duck Tembusu Virus, sequence accession [ JQ31446488]
- Duck Tembusu Virus, sequence accession [ JQ31446588]
- Emiliania huxleyi Virus 202, sequence accession [ HQ63414589]
- Emiliania huxleyi Virus EhV-88, sequence accession [ JF97431089]
- Emiliania huxleyi EhV-201, sequence accession [ JF97431189]
- Emiliania huxleyi EhV-207, sequence accession [ JF97431789]
- Emiliania huxleyi EhV-208, sequence accession [ JF97431889]
- Glarea lozoyensis, sequence accession GUE00000000 [90]
- Nannochloropis gaditana, sequence accession [ AGNI0000000091]
- Oryza sativa cv., sequence accession DRA000499 [92]
- Partetravirus, sequence accession [ JN99026993]
- Porcine Bocavirus PBoV5, sequence accession [ JN83165194]
- Porcine epidemic diarrhea virus, sequence accession [ JQ28290995]
- Pseudomonas aeruginosa lytic bacteriophage PA1Ø, sequence accession [ HM62408096]
- Pseudomonas fluorescens phage OBP, sequence accesssion [ JN62716097]
- RNA Virus from Avocado, sequence accession [ JN88041498]
- Salmonella enterica Serovar Typhimurium Bacteriophage SPN1S, sequence accession [ JN39118099]
- Schistosoma haematobium, sequence accession PRJNA78265 [100]
- Schistosoma mansoni, sequence accession [ ERP00038101]
- Stenopirates sp., sequence accession [ JN100019102]
- T7-Like Virus, sequence accession [ JN651747103]
- Vibrio harveyi siphophage VHS1, sequence accession [ JF713456104]
- Tyrolean ice man, sequence accession ERP001144 [105]