首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Frith CD  Frith U 《Neuron》2006,50(4):531-534
Mentalizing refers to our ability to read the mental states of other agents and engages many neural processes. The brain's mirror system allows us to share the emotions of others. Through perspective taking, we can infer what a person currently believes about the world given their point of view. Finally, the human brain has the unique ability to represent the mental states of the self and the other and the relationship between these mental states, making possible the communication of ideas.  相似文献   

2.
The neural basis of birdsong   总被引:4,自引:0,他引:4  
Songbirds represent an excellent model system for understanding the neural mechanisms underlying learning.  相似文献   

3.
Humans can recognize an object within a fraction of a second, even if there are no clues about what kind of object it might be. Recent findings have identified functional properties of extrastriate regions in the ventral visual pathway that are involved in the representation and perception of objects and faces. The functional properties of these regions, and the correlation between the activation of these regions and visual recognition, indicate that the lateral and ventral occipito-temporal areas are important in perceiving and recognizing objects and faces.  相似文献   

4.
The neural basis of perceptual learning   总被引:20,自引:0,他引:20  
Gilbert CD  Sigman M  Crist RE 《Neuron》2001,31(5):681-697
Perceptual learning is a lifelong process. We begin by encoding information about the basic structure of the natural world and continue to assimilate information about specific patterns with which we become familiar. The specificity of the learning suggests that all areas of the cerebral cortex are plastic and can represent various aspects of learned information. The neural substrate of perceptual learning relates to the nature of the neural code itself, including changes in cortical maps, in the temporal characteristics of neuronal responses, and in modulation of contextual influences. Top-down control of these representations suggests that learning involves an interaction between multiple cortical areas.  相似文献   

5.
A complete motivated or goal-oriented behavioral act can be viewed as consisting of initiation, procurement, and consummatory phases. In order to gain some insight into the organizing principles of neural circuitry that underlies the expression of motivated behavior, certain basic pathways thought to play an important role in two specific classes of such behavior, hypovolemic thirst and reproductive behavior, are reviewed. In both cases, humoral factors participate in the initiation phase, and their sites of action have been rather clearly defined. Circuitry underlying the procurement phase, which involves foraging behavior, is much more complex, but can be thought of as involving two fundamentally different systems, one concerned with the processing of specific sensory information and the production of refined motor responses, and the other concerned with modulating behavioral state. The former is associated primarily with the thalamocortical-lateral forebrain system whereas the latter is associated primarily with the medial forebrain system. Finally, evidence favoring the hypothesis that "biochemical switching" may take place in fixed neuroanatomical circuitry associated with ingestive and reproductive behaviors is reviewed.  相似文献   

6.
Ability in various cognitive domains is often assessed by measuring task performance, such as the accuracy of a perceptual categorization. A similar analysis can be applied to metacognitive reports about a task to quantify the degree to which an individual is aware of his or her success or failure. Here, we review the psychological and neural underpinnings of metacognitive accuracy, drawing on research in memory and decision-making. These data show that metacognitive accuracy is dissociable from task performance and varies across individuals. Convergent evidence indicates that the function of the rostral and dorsal aspect of the lateral prefrontal cortex (PFC) is important for the accuracy of retrospective judgements of performance. In contrast, prospective judgements of performance may depend upon medial PFC. We close with a discussion of how metacognitive processes relate to concepts of cognitive control, and propose a neural synthesis in which dorsolateral and anterior prefrontal cortical subregions interact with interoceptive cortices (cingulate and insula) to promote accurate judgements of performance.  相似文献   

7.
Running our fingers across a textured surface gives rise to two types of skin deformations, each transduced by different tactile nerve fibers. Coarse features produce large-scale skin deformations whose spatial configuration is reflected in the spatial pattern of activation of some tactile fibers. Scanning a finely textured surface elicits vibrations in the skin, which in turn evoked temporally patterned responses in other fibers. These two neural codes—spatial and temporal—drive a spectrum of neural response properties in somatosensory cortex: At one extreme, neurons are sensitive to spatial patterns and encode coarse features; at the other extreme, neurons are sensitive to vibrations and encode fine features. While the texture responses of nerve fibers are dependent on scanning speed, those of cortical neurons are less so, giving rise to a speed invariant texture percept. Neurons in high-level somatosensory cortices combine information about texture with information about task variables.  相似文献   

8.
The neural basis of visual body perception   总被引:3,自引:0,他引:3  
The human body, like the human face, is a rich source of socially relevant information about other individuals. Evidence from studies of both humans and non-human primates points to focal regions of the higher-level visual cortex that are specialized for the visual perception of the body. These body-selective regions, which can be dissociated from regions involved in face perception, have been implicated in the perception of the self and the 'body schema', the perception of others' emotions and the understanding of actions.  相似文献   

9.
The neural basis of financial risk taking   总被引:15,自引:0,他引:15  
Kuhnen CM  Knutson B 《Neuron》2005,47(5):763-770
Investors systematically deviate from rationality when making financial decisions, yet the mechanisms responsible for these deviations have not been identified. Using event-related fMRI, we examined whether anticipatory neural activity would predict optimal and suboptimal choices in a financial decision-making task. We characterized two types of deviations from the optimal investment strategy of a rational risk-neutral agent as risk-seeking mistakes and risk-aversion mistakes. Nucleus accumbens activation preceded risky choices as well as risk-seeking mistakes, while anterior insula activation preceded riskless choices as well as risk-aversion mistakes. These findings suggest that distinct neural circuits linked to anticipatory affect promote different types of financial choices and indicate that excessive activation of these circuits may lead to investing mistakes. Thus, consideration of anticipatory neural mechanisms may add predictive power to the rational actor model of economic decision making.  相似文献   

10.
11.
Smooth-pursuit eye movements are used to stabilize the image of a moving object of interest on the fovea, thus guaranteeing its high-acuity scrutiny. Such movements are based on a phylogenetically recent cerebro-ponto-cerebellar pathway that has evolved in parallel with foveal vision. Recent work has shown that a network of several cerebrocortical areas directs attention to objects of interest moving in three dimensions and reconstructs the trajectory of the target in extrapersonal space, thereby integrating various sources of multimodal sensory and efference copy information, as well as cognitive influences such as prediction. This cortical network is the starting point of a set of parallel cerebrofugal projections that use different parts of the dorsal pontine nuclei and the neighboring rostral nucleus reticularis tegmenti pontis as intermediate stations to feed two areas of the cerebellum, the flocculus-paraflocculus and the posterior vermis, which make mainly complementary contributions to the control of smooth pursuit.  相似文献   

12.
Rett syndrome is an Autism Spectrum Disorder caused by mutations in the gene encoding methyl-CpG binding protein (MeCP2). Following a period of normal development, patients lose learned communication and motor skills, and develop a number of symptoms including motor disturbances, cognitive impairments and often seizures. In this review, we discuss the role of MeCP2 in regulating synaptic function and how synaptic dysfunctions lead to neuronal network impairments and alterations in sensory information processing. We propose that Rett syndrome is a disorder of neural circuits as a result of non-linear accumulated dysfunction of synapses at the level of individual cell populations across multiple neurotransmitter systems and brain regions.  相似文献   

13.
Schizophrenia is a biologically based disorder characterised by false perceptions (hallucinations) and false beliefs (delusions). The underlying physiological cause of these mental abnormalities remains unknown. There is increasing evidence that one class of symptom, the 'made experiences' including delusions of alien control and thought insertion, is associated with abnormalities in the mechanism that predicts the outcome of intended actions (the forward model). For these patients active movements feel like passive movements. As a result these patients do not feel in control of their actions. However, comparison with various neurological disorders, such as those associated with parietal lobe lesions, suggest that this abnormal experience is not sufficient to explain the feeling that some other agent is controlling is one's actions. Preliminary evidence suggests that patients with schizophrenia have an exaggerated sense of agency. In combination with the feeling of not being in control, this exaggerated sense of agency could explain delusions of alien control in which the patient attributes his own actions to another agent. Little is yet know about the neural basis of the predictive mechanisms that create the feeling that we are in control of our movements. Such prediction requires integration of information about intended movements generated in frontal cortex with sensory processing in posterior regions of the brain. Measures of functional connectivity suggest that long-range interactions between frontal and posterior regions are abnormally reduced in patients with schizophrenia. Further research is needed to explore the precise involvement of long-range connections in the mechanisms of forward modelling.  相似文献   

14.
Two of the most robust markers for "special" face processing are the behavioral face-inversion effect (FIE)-the disproportionate drop in recognition of upside-down (inverted) stimuli relative to upright faces-and the face-selective fMRI response in the fusiform face area (FFA). However, the relationship between these two face-selective markers is unknown. Here we report that the behavioral FIE is closely associated with the fMRI response in the FFA, but not in other face-selective or object-selective regions. The FFA and the face-selective region in the superior temporal sulcus (f_STS), but not the occipital face-selective region (OFA), showed a higher response to upright than inverted faces. However, only in the FFA was this fMRI-FIE positively correlated across subjects with the behavioral FIE. Second, the FFA, but not the f_STS, showed greater neural sensitivity to differences between faces when they were upright than inverted, suggesting a possible neural mechanism for the behavioral FIE. Although a similar trend was found in the occipital face area (OFA), it was less robust than the FFA. Taken together, our data suggest that among the face-selective and object-selective regions, the FFA is a primary neural source of the behavioral FIE.  相似文献   

15.
Fundamental breakthroughs in the neurosciences, combined with technical innovations for measuring brain activity, are shedding new light on the neural basis of second language (L2) processing, and on its relationship to native language processing (L1). The long-held assumption that L1 and L2 are necessarily represented in different brain regions in bilinguals has not been confirmed. On the contrary, the available evidence indicates that L1 and L2 are processed by the same neural devices. The neural differences in L1 and L2 representations are only related to the specific computational demands, which vary according to the age of acquisition, the degree of mastery and the level of exposure to each language. Finally, the acquisition of L2 could be considered as a dynamic process, requiring additional neural resources in specific circumstances.  相似文献   

16.
Sleep and Biological Rhythms - The fruit fly Drosophila melanogaster has been a generous creature to circadian rhythm researchers over several decades. Behavioral, genetic and molecular studies of...  相似文献   

17.
Friederici AD 《Neuron》2006,52(6):941-952
The neural correlates of early language development and language impairment are described, with the adult language-related brain systems as a target model. Electrophysiological and hemodynamic studies indicate that language functions to be installed in the child's brain are similar to those of adults, with lateralization being present at birth, phonological processes during the first months, semantic processes at 12 months, and syntactic processes around 30 months. These findings support the view that the brain basis of language develops continuously over time. Discontinuities are observed in children with language impairment. Here, the observed functional abnormalities are accompanied by structural abnormalities in inferior frontal and temporal brain regions.  相似文献   

18.
People generally prefer to receive rewarding outcomes sooner rather than later. Such preferences result from delay discounting, or the process by which outcomes are devalued for the expected delay until their receipt. We investigated cultural differences in delay discounting by contrasting behaviour and brain activity in separate cohorts of Western (American) and Eastern (Korean) subjects. Consistent with previous reports, we find a dramatic difference in discounting behaviour, with Americans displaying much greater present bias and elevated discount rates. Recent neuroimaging findings suggest that differences in discounting may arise from differential involvement of either brain reward areas or regions in the prefrontal and parietal cortices associated with cognitive control. We find that the ventral striatum is more greatly recruited in Americans relative to Koreans when discounting future rewards, but there is no difference in prefrontal or parietal activity. This suggests that a cultural difference in emotional responsivity underlies the observed behavioural effect. We discuss the implications of this research for strategic interrelations between Easterners and Westerners.  相似文献   

19.
20.
The known nonlinearities of the femur-tibia control loop of the stick insect Carausius morosus (enabling the system to produce catalepsy) are already present in the nonspiking interneuron E4: (1) The decay of depolarizations in interneuron E4 following slow elongation movements of the femoral chordotonal organ apodeme could be described by a single exponential function, whereas the decay following faster movements had to be characterized by a double exponential function. (2) Each of the two corresponding time constants was independent of stimulus velocity. (3) The relative contribution of each function to the total amount of depolarization changed with stimulus velocity. (4) The characteristics described in (1)–(3) were also found in the slow extensor tibiae motoneuron. (5) Single electrode voltage clamp studies on interneuron E4 indicated that no voltage dependent membrane properties were involved in the generation of the observed time course of decay. Thus, we can trace back a certain behavior (catalepsy) to the properties of an identified, nonspiking interneuron.Abbrevations FETi fast extensor tibiae motor neuron - FT-joint femur-tibia joint - FT-control loop femur-tibia control loop - SETi slow extensor tibiae motor neuron - R regression coefficient  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号