首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background and Aims

Knowledge of pollen dispersal patterns and variation of fecundity is essential to understanding plant evolutionary processes and to formulating strategies to conserve forest genetic resources. Nevertheless, the pollen dispersal pattern of dipterocarp, main canopy tree species in palaeo-tropical forest remains unclear, and flowering intensity variation in the field suggests heterogeneity of fecundity.

Methods

Pollen dispersal patterns and male fecundity variation of Shorea leprosula and Shorea parvifolia ssp. parvifolia on Peninsular Malaysian were investigated during two general flowering seasons (2001 and 2002), using a neighbourhood model modified by including terms accounting for variation in male fecundity among individual trees to express heterogeneity in flowering.

Key Results

The pollen dispersal patterns of the two dipterocarp species were affected by differences in conspecific tree flowering density, and reductions in conspecific tree flowering density led to an increased selfing rate. Active pollen dispersal and a larger number of effective paternal parents were observed for both species in the season of greater magnitude of general flowering (2002).

Conclusions

The magnitude of general flowering, male fecundity variation, and distance between pollen donors and mother trees should be taken into account when attempting to predict the effects of management practices on the self-fertilization and genetic structure of key tree species in tropical forest, and also the sustainability of possible management strategies, especially selective logging regimes.  相似文献   

3.
Over the past century, the Brazilian Atlantic forest has been reduced to small, isolated fragments of forest. Reproductive isolation theories predict a loss of genetic diversity and increases in inbreeding and spatial genetic structure (SGS) in such populations. We analysed eight microsatellite loci to investigate the pollen and seed dispersal patterns, genetic diversity, inbreeding and SGS of the tropical tree Copaifera langsdorffii in a small (4.8 ha), isolated population. All 112 adult trees and 128 seedlings found in the stand were sampled, mapped and genotyped. Seedlings had significantly lower levels of genetic diversity (A=16.5±0.45, mean±95% s.e.; He=0.838±0.006) than did adult trees (A=23.2±0.81; He=0.893±0.030). Parentage analysis did not indicate any seed immigration (mseeds=0) and the pollen immigration rate was very low (mpollen=0.047). The average distance of realized pollen dispersal within the stand was 94 m, with 81% of the pollen travelling <150 m. A significant negative correlation was found between the frequency and distance of pollen dispersal (r=−0.79, P<0.01), indicating that short-distance pollinations were more frequent. A significant SGS for both adults (∼50 m) and seedlings (∼20 m) was also found, indicating that most of the seeds were dispersed over short distances. The results suggested that the spatial isolation of populations by habitat fragmentation can restrict seed and pollen gene flow, increase SGS and affect the genetic diversity of future generations.  相似文献   

4.
Understanding the mating patterns of populations of tree species is a key component of ex situ genetic conservation. In this study, we analysed the genetic diversity, spatial genetic structure (SGS) and mating system at the hierarchical levels of fruits and individuals as well as pollen dispersal patterns in a continuous population of Theobroma cacao in Pará State, Brazil. A total of 156 individuals in a 0.56 ha plot were mapped and genotyped for nine microsatellite loci. For the mating system analyses, 50 seeds were collected from nine seed trees by sampling five fruits per tree (10 seeds per fruit). Among the 156 individuals, 127 had unique multilocus genotypes, and the remaining were clones. The population was spatially aggregated; it demonstrated a significant SGS up to 15 m that could be attributed primarily to the presence of clones. However, the short seed dispersal distance also contributed to this pattern. Population matings occurred mainly via outcrossing, but selfing was observed in some seed trees, which indicated the presence of individual variation for self-incompatibility. The matings were also correlated, especially within (r̂p(m)=0.607) rather than among the fruits (r̂p(m)=0.099), which suggested that a small number of pollen donors fertilised each fruit. The paternity analysis suggested a high proportion of pollen migration (61.3%), although within the plot, most of the pollen dispersal encompassed short distances (28 m). The determination of these novel parameters provides the fundamental information required to establish long-term ex situ conservation strategies for this important tropical species.  相似文献   

5.
Chybicki IJ  Oleksa A  Burczyk J 《Heredity》2011,107(6):589-600
Habitat fragmentation can have severe genetic consequences for trees, such as increased inbreeding and decreased effective population size. In effect, local populations suffer from reduction of genetic variation, and thus loss of adaptive capacity, which consequently increases their risk of extinction. In Europe, Taxus baccata is among a number of tree species experiencing strong habitat fragmentation. However, there is little empirical data on the population genetic consequences of fragmentation for this species. This study aimed to characterize local genetic structure in two natural remnants of English yew in Poland based on both amplified fragment length polymorphism (AFLP) and microsatellite (SSR) markers. We introduced a Bayesian approach that estimates the average inbreeding coefficient using AFLP (dominant) markers. Results showed that, in spite of high dispersal potential (bird-mediated seed dispersal and wind-mediated pollen dispersal), English yew populations show strong kinship structure, with a spatial extent of 50–100 m, depending on the population. The estimated inbreeding levels ranged from 0.016 to 0.063, depending on the population and marker used. Several patterns were evident: (1) AFLP markers showed stronger kinship structure than SSRs; (2) AFLP markers provided higher inbreeding estimates than SSRs; and (3) kinship structure and inbreeding were more pronounced in denser populations regardless of the marker used. Our results suggest that, because both kinship structure and (bi-parental) inbreeding exist in populations of English yew, gene dispersal can be fairly limited in this species. Furthermore, at a local scale, gene dispersal intensity can be more limited in a dense population.  相似文献   

6.

Background and Aims

Wild carrot is the ancestor of cultivated carrot and is the most important gene pool for carrot breeding. Transgenic carrot may be released into the environment in the future. The aim of the present study was to determine how far a gene can disperse in wild carrot populations, facilitating risk assessment and management of transgene introgression from cultivated to wild carrots and helping to design sampling strategies for germplasm collections.

Methods

Wild carrots were sampled from Meijendel and Alkmaar in The Netherlands and genotyped with 12 microsatellite markers. Spatial autocorrelation analyses were used to detect spatial genetic structures (SGSs). Historical gene dispersal estimates were based on an isolation by distance model. Mating system and contemporary pollen dispersal were estimated using 437 offspring of 20 mothers with different spatial distances and a correlated paternity analysis in the Meijendel population.

Key Results

Significant SGSs are found in both populations and they are not significantly different from each other. Combined SGS analysis indicated significant positive genetic correlations up to 27 m. Historical gene dispersal σg and neighbourhood size Nb were estimated to be 4–12 m [95 % confidence interval (CI): 3–25] and 42–73 plants (95 % CI: 28–322) in Meijendel and 10–31 m (95 % CI: 7–∞) and 57–198 plants (95 % CI: 28–∞) in Alkmaar with longer gene dispersal in lower density populations. Contemporary pollen dispersal follows a fat-tailed exponential-power distribution, implying pollen of wild carrots could be dispersed by insects over long distance. The estimated outcrossing rate was 96 %.

Conclusions

SGSs in wild carrots may be the result of high outcrossing, restricted seed dispersal and long-distance pollen dispersal. High outcrossing and long-distance pollen dispersal suggest high frequency of transgene flow might occur from cultivated to wild carrots and that they could easily spread within and between populations.  相似文献   

7.
K Ottewell  E Grey  F Castillo  J Karubian 《Heredity》2012,109(6):332-339
Pollen dispersal shapes the local genetic structure of plant populations and determines the opportunity for local selection and genetic drift, but has been well studied in few animal-pollinated plants in tropical rainforests. Here, we characterise pollen movement for an insect-pollinated Neotropical canopy palm, Oenocarpus bataua, and relate these data to adult mating system and population genetic structure. The study covers a 130-ha parcel in which all adult trees (n=185) were mapped and genotyped at 12 microsatellite loci, allowing us to positively identify the source tree for 90% of pollination events (n=287 of 318 events). Mating system analysis showed O. bataua was effectively outcrossed (tm=1.02) with little biparental inbreeding (tmts=−0.005) and an average of 5.4 effective pollen donors (Nep) per female. Dispersal distances were relatively large for an insect-pollinated species (mean=303 m, max=1263 m), and far exceeded nearest-neighbour distances. Dispersal kernel modelling indicated a thin-tailed Weibull distribution offered the best fit to the genetic data, which contrasts with the fat-tailed kernels typically reported for pollen dispersal in trees. Preliminary analyses suggest that our findings may be explained, at least in part, by a relatively diffuse spatial and temporal distribution of flowering trees. Comparison with previously reported estimates of seed movement for O. bataua suggests that pollen and seed dispersal distances may be similar. These findings add to the growing body of information on dispersal in insect-pollinated trees, but underscore the need for continued research on tropical systems in general, and palms in particular.  相似文献   

8.

Background and Aims

Plants show patterns of spatial genetic differentiation reflecting gene flow mediated by pollen and seed dispersal and genotype × environment interactions. If patterns of genetic structure are determined largely by gene flow then they may be useful in predicting the likelihood of inbreeding or outbreeding depression but should be less useful if there is strong site-specific selection. For many Australian plants little is known about either their population genetics or the effects on mating systems of variation in pollen transfer distances. Experimental pollinations were used to compare the reproductive success of bird-adapted Grevillea mucronulata plants mated with individuals from a range of spatial scales. A hierarchical survey of microsatellite DNA variation was also conducted to describe the scale of population differentiation for neutral markers.

Methods

The effects of four pollen treatments on reproductive performance were compared. These treatments were characterized by transfer of pollen from (a) neighbouring adults; (b) an adjacent cluster of adults (30–50 m distant); (c) a distant cluster (>5 km distant); and (d) open pollination. Sets of 17·9 ± 3·3 leaves from each of 15 clusters of plants were genotyped and spatial autocorrelation and F statistics were used to describe patterns of genetic structure.

Key Results

Grevillea mucronulata displayed evidence of both inbreeding and outbreeding depression, with ‘intermediate’ pollen producing consistently superior outcomes for most aspects of fitness including seed set, seed size, germination and seedling growth. Significant genotypic structuring was detected within clusters (spatial autocorrelation) and among adjacent clusters and clusters separated by >5 km distance (FST = 0·07 and 0·10).

Conclusions

The superior outcome of intermediate pollen transfer and genetic differentiation of adjacent clusters suggests that G. mucronulata selection disfavours matings among closely and distantly related neighbours. Moreover, the performance of open-pollinated seedlings was poor, implying that current mating patterns are suboptimal.  相似文献   

9.

Background and Aims

Gene flow by seed and pollen largely shapes the genetic structure within and among plant populations. Seed dispersal is often strongly spatially restricted, making gene flow primarily dependent on pollen dispersal within and into populations. To understand distance-dependent pollination success, pollen dispersal and gene flow were studied within and into a population of the alpine monocarpic perennial Campanula thyrsoides.

Methods

A paternity analysis was performed on sampled seed families using microsatellites, genotyping 22 flowering adults and 331 germinated offspring to estimate gene flow, and pollen analogues were used to estimate pollen dispersal. The focal population was situated among 23 genetically differentiated populations on a subalpine mountain plateau (<10 km2) in central Switzerland.

Key Results

Paternity analysis assigned 110 offspring (33·2 %) to a specific pollen donor (i.e. ‘father’) in the focal population. Mean pollination distance was 17·4 m for these offspring, and the pollen dispersal curve based on positive LOD scores of all 331 offspring was strongly decreasing with distance. The paternal contribution from 20–35 offspring (6·0–10·5 %) originated outside the population, probably from nearby populations on the plateau. Multiple potential fathers were assigned to each of 186 offspring (56·2 %). The pollination distance to ‘mother’ plants was negatively affected by the mothers'' degree of spatial isolation in the population. Variability in male mating success was not related to the degree of isolation of father plants.

Conclusions

Pollen dispersal patterns within the C. thyrsoides population are affected by spatial positioning of flowering individuals and pollen dispersal may therefore contribute to the course of evolution of populations of this species. Pollen dispersal into the population was high but apparently not strong enough to prevent the previously described substantial among-population differentiation on the plateau, which may be due to the monocarpic perenniality of this species.  相似文献   

10.
The genetic diversity of small populations is greatly influenced by local dispersal patterns and genetic connectivity among populations, with pollen dispersal being the major component of gene flow in many plants species. Patterns of pollen dispersal, mating system parameters and spatial genetic structure were investigated in a small isolated population of the emblematic palm Phoenix canariensis in Gran Canaria island (Canary Islands). All adult palms present in the study population (n=182), as well as 616 seeds collected from 22 female palms, were mapped and genotyped at 8 microsatellite loci. Mating system analysis revealed an average of 5.8 effective pollen donors (Nep) per female. There was strong variation in correlated paternity rates across maternal progenies (ranging from null to 0.9) that could not be explained by the location and density of local males around focal females. Paternity analysis revealed a mean effective pollen dispersal distance of ∼71 m, with ∼70% of effective pollen originating from a distance of <75 m, and 90% from <200 m. A spatially explicit mating model indicated a leptokurtic pollen dispersal kernel, significant pollen immigration (12%) from external palm groves and a directional pollen dispersal pattern that seems consistent with local altitudinal air movement. No evidence of inbreeding or genetic diversity erosion was found, but spatial genetic structure was detected in the small palm population. Overall, the results suggest substantial pollen dispersal over the studied population, genetic connectivity among different palm groves and some resilience to neutral genetic erosion and subsequently to fragmentation.  相似文献   

11.
C M Sloop  D R Ayres  D R Strong 《Heredity》2011,106(4):547-556
Invasive hybrids and their spread dynamics pose unique opportunities to study evolutionary processes. Invasive hybrids of native Spartina foliosa and introduced S. alterniflora have expanded throughout San Francisco Bay intertidal habitats within the past 35 years by deliberate plantation and seeds floating on the tide. Our goals were to assess spatial and temporal scales of genetic structure in Spartina hybrid populations within the context of colonization history. We genotyped adult and seedling Spartina using 17 microsatellite loci and mapped their locations in three populations. All sampled seedlings were hybrids. Bayesian ordination analysis distinguished hybrid populations from parent species, clearly separated the population that originated by plantation from populations that originated naturally by seed and aligned most seedlings within each population. Population genetic structure estimated by analysis of molecular variance was substantial (FST=0.21). Temporal genetic structure among age classes varied highly between populations. At one population, the divergence between adults and 2004 seedlings was low (FST=0.02) whereas at another population this divergence was high (FST=0.26). This latter result was consistent with local recruitment of self-fertilized seed produced by only a few parental plants. We found fine-scale spatial genetic structure at distances less than ∼200 m, further supporting local seed and/or pollen dispersal. We posit a few self-fertile plants dominating local recruitment created substantial spatial genetic structure despite initial long-distance, human dispersal of hybrid Spartina through San Francisco Bay. Fine-scale genetic structure may more strongly develop when local recruits are dominated by the offspring of a few self-fertile plants.  相似文献   

12.
BACKGROUND AND AIMS: Flowering phenology is described and the effect of flowering time on pollination success is evaluated in the deceit-pollinated tropical orchid, Myrmecophila christinae. It was expected that, due to this species' deceit pollination strategy and low observed pollinator visit rate, there would be a higher probability of natural selection events favouring individuals flowering away from the population flowering peak. METHODS: The study covers two consecutive years and four populations of M. christinae located along the north coast of the Yucatán Peninsula. For phenological and pollination success data, a total of 110 individuals were monitored weekly in 1998, and 83 individuals in 1999, during all the flowering and fruiting season. KEY RESULTS: The results showed significant differences in the probability of donating and receiving pollen throughout the flowering season. The probability of receiving or donating pollen increased the further an individual flowering was from the flowering peak. Regression analysis showed directional and disruptive phenotypic natural selection gradients, suggesting the presence of selection events unfavourable to flowering during flowering peak, for both male success (pollen removal) and female success (fruit production). However, the intensity and significance of the natural selection events varied between populations from year to year. The variation between seasons and populations was apparently due to variations in the density of reproductive individuals in each population and each season. CONCLUSIONS: As in other deceit-pollinated orchids, natural selection in M. christinae favours individuals flowering early or late in relation to population peak flowering. However, results also suggested a fluctuating regime of selective events act on flowering time of M. christinae.  相似文献   

13.
Pollen dispersal is a major component of gene flow in plant populations. It can influence microevolution within and among populations as well as the evolution of floral characters that affect dispersal. Most previous studies have relied on point estimates to characterize dispersal distances, even though there is likely to be substantial intrapopulational and interpopulational variation. We measured variation in pollen dispersal for the hummingbird-pollinated herb Ipomopsis aggregata (Polemoniaceae), using powdered fluorescent dyes to estimate pollen movement. Analysis of 5–6 natural populations in each of three years indicated that mean and mean squared distances of pollen dispersal, measured over the reproductive lifespan of individual plants, varied more than threefold among populations and years. Dispersal distances also shifted over the season within a given population. Unlike the variation among populations, these seasonal changes were associated in part with changes in flower density. The mean distance of pollen dispersal from an individual plant was unrelated to the date of first flowering, but did reflect two floral characters. Plants with higher variance in stamen length across flowers delivered pollen farther on average, as predicted by computer simulations of pollen carryover. Plants with lower mean stamen lengths also delivered pollen farther. Such effects of plant characters on pollen dispersal are a critical prerequisite for dispersal to evolve in response to its effects on fitness.  相似文献   

14.
Although genetically modified (GM) soybean has never been cultivated commercially in Japan, it is essential to set up the isolation distance required to prevent out-crossing between GM and conventional soybean in preparation for any future possibility of pollen transfer. The airborne soybean pollen was sampled using some Durham pollen samplers located in the range of 20 m from the field edge. In addition, the dispersal distance was assessed in a wind tunnel under constant air flow and then it was compared with the anticipated distances based on the pollen diameter. In the field, the maximum pollen density per day observed was 1.235 grains cm−2 day−1 at three observation points within 2.5 m from the field and inside the field the mean density did not reach the rate of 1 grain cm−2 day−1 during 19 flowering days. The results of the wind tunnel experiment also showed that the plants had almost no airborne release of pollen and the dispersal distance was shorter than theoretical value due to clustered dispersal. This study showed little airborne pollen in and around the soybean field and the dispersal is restricted to a small area. Therefore, wind-mediated pollination appears to be negligible.  相似文献   

15.
Spatiotemporal variation in mating patterns is poorly known in wind‐pollinated plant species. Here, we analysed mating patterns of the wind‐pollinated dioecious shrub Pistacia lentiscus by genotyping 904 seeds from 30 mother plants with eight microsatellite markers in a high‐density population in two consecutive flowering seasons. We found significant differences in some mating system estimates between years, particularly in the levels of correlated paternity. Overall, within‐mothers correlated paternity was higher in 2007 than in 2006 (rpWM = 0.085 and 0.030), which translated into an effective number of fathers (Nep) of 11.8 and 33.6 respectively. Using a smoothing interpolation technique, we show that the effective pollen cloud was spatially structured in patches of high‐ and low‐genetic diversity, which do not remain constant from year to year. In 2006, the among‐mothers correlated paternity (rpAM) showed no trend with distance, suggesting no restriction of pollen dispersal. However, in 2007, rpAM was greater than zero at short distances, revealing the existence of small‐scale patterns of pollen dispersal. The fact that the studied seasons were climatically homogeneous during the flowering time suggested that the observed differences might be ascribed to between‐year phenological variation of individuals in the studied population or other (unknown) factors. Numerical simulations, based on the real data set, indicated that the clumping of males and decreasing plant density, which is related to different types of pollen limitation, greatly increase correlated mating in this wind‐pollinated species, which is of relevance under the frame of the continuous anthropogenic habitat disturbance suffered by Mediterranean ecosystems.  相似文献   

16.
This case study examines the pollen dispersal distance, pollen dispersal patterns and intra‐family genetic structure for isolated trees in pastures of the bat‐pollinated Neotropical tree species Hymenaea stigonocarpa using six microsatellite loci and parentage analysis. The sampling included 28 grouped trees (referred to as the population) and six isolated trees in pastureland along a highway in Mato Grosso do Sul State, Brazil. From the population, we sampled 137 seeds from 12 seed‐trees, and from the isolated trees, we sampled 34 seeds from two seed‐trees. The results showed that pollen was dispersed over long distances (reaching 7353 m) and therefore the spatially isolated trees were not reproductively isolated. The pollen immigration rate in the population was also high (31%). Isolated trees presented a higher selfing rate (s=26%) than trees in the population (s=12%), suggesting that the spatial isolation of the trees increased selfing. However, selfing was responsible for only 30 percent of the inbreeding in offspring and mating among relatives was 70 percent. In the population, excluding selfing, ca 72 percent of the pollen was dispersed over distances <1000 m (average: 860 m). For the two isolated seed‐trees, excluding selfing, the average pollen dispersal distance was 5229 m. The results demonstrate that although pollen can be dispersed over long distances for H. stigonocarpa isolated trees, a high percentage of pollen comes from the same tree (selfing) and mating was correlated. Consequently, seeds must be collected from a large number of seed‐trees for conservation purposes.  相似文献   

17.
《Nordic Journal of Botany》2007,25(3-4):176-182
Pollen dispersal between local plant populations within a range of 6 km in a geographically defined metapopulation of the lepidopteran-pollinated deceptive orchid Anacamptis pyramidalis was studied on the island Öland in the Baltic Sea. Local A. pyramidalis populations were examined for pollinators, flowering individuals, and fruit set. Population sizes of pollen vector species were estimated using a mark–release–recapture technique. As pollen vectors, the burnet moth Zygaena minos and the butterfly Aporia crataegi dominated. 205 out of 745 marked lepidopterans were pollinarium carriers. The proportion carriers of the total was considerably higher in Z. minos (50.3%), than in A. crataegi (21.5%) and nymphalidae (8.2%). Furthermore, Z. minos moved much shorter distances than A. crataegi did, while no difference in potential pollen dispersal distances were found between males and females. The number of individual vectors recaptured in another local population of A. pyramidalis was low: A. crataegi (8) and Z. minos (1). The ratio of pollinaria transferred to another local A. pyramidalis population compared to pollinaria remaining within the same local population was 1:41. This study highlights that pollen dispersal distances vary between pollen vector species.  相似文献   

18.
Seed and pollen dispersal contribute to gene flow and shape the genetic patterns of plants over fine spatial scales. We inferred fine-scale spatial genetic structure (FSGS) and estimated realized dispersal distances in Phytelephas aequatorialis, a Neotropical dioecious large-seeded palm. We aimed to explore how seed and pollen dispersal shape this genetic pattern in a focal population. For this purpose, we genotyped 138 seedlings and 99 adults with 20 newly developed microsatellite markers. We tested if rodent-mediated seed dispersal has a stronger influence than insect-mediated pollen dispersal in shaping FSGS. We also tested if pollen dispersal was influenced by the density of male palms around mother palms in order to further explore this ecological process in large-seeded plants. Rodent-mediated dispersal of these large seeds occurred mostly over short distances (mean 34.76 ± 34.06 m) while pollen dispersal distances were two times higher (mean 67.91 ± 38.29 m). The spatial extent of FSGS up to 35 m and the fact that seed dispersal did not increase the distance at which male alleles disperse suggest that spatially limited seed dispersal is the main factor shaping FSGS and contributes only marginally to gene flow within the population. Pollen dispersal distances depended on the density of male palms, decreasing when individuals show a clumped distribution and increasing when they are scattered. Our results show that limited seed dispersal mediated by rodents shapes FSGS in P. aequatorialis, while more extensive pollen dispersal accounts for a larger contribution to gene flow and may maintain high genetic diversity. Abstract in Spanish is available with online material.  相似文献   

19.
Throughout Amazonia, overfishing has decimated populations of fruit-eating fishes, especially the large-bodied characid, Colossoma macropomum. During lengthy annual floods, frugivorous fishes enter vast Amazonian floodplains, consume massive quantities of fallen fruits and egest viable seeds. Many tree and liana species are clearly specialized for icthyochory, and seed dispersal by fish may be crucial for the maintenance of Amazonian wetland forests. Unlike frugivorous mammals and birds, little is known about seed dispersal effectiveness of fishes. Extensive mobility of frugivorous fish could result in extremely effective, multi-directional, long-distance seed dispersal. Over three annual flood seasons, we tracked fine-scale movement patterns and habitat use of wild Colossoma, and seed retention in the digestive tracts of captive individuals. Our mechanistic model predicts that Colossoma disperses seeds extremely long distances to favourable habitats. Modelled mean dispersal distances of 337-552 m and maximum of 5495 m are among the longest ever reported. At least 5 per cent of seeds are predicted to disperse 1700-2110 m, farther than dispersal by almost all other frugivores reported in the literature. Additionally, seed dispersal distances increased with fish size, but overfishing has biased Colossoma populations to smaller individuals. Thus, overexploitation probably disrupts an ancient coevolutionary relationship between Colossoma and Amazonian plants.  相似文献   

20.

Background

Agri-environment schemes play an increasingly important role for the conservation of rare plants in intensively managed agricultural landscapes. However, little is known about their effects on gene flow via pollen dispersal between populations of these species.

Methodology/Principal Findings

In a 2-year experiment, we observed effective pollen dispersal from source populations of Centaurea jacea in restored meadows, the most widespread Swiss agri-environment scheme, to potted plants in adjacent intensively managed meadows without other individuals of this species. Potted plants were put in replicated source populations at 25, 50, 100 m and where possible 200 m distance from these source populations. Pollen transfer among isolated plants was prevented by temporary bagging, such that only one isolated plant was accessible for flower visitors at any one time. Because C. jacea is self-incompatible, seed set in single-plant isolates indicated insect mediated effective pollen dispersal from the source population. Seed set was higher in source populations (35.7±4.4) than in isolates (4.8±1.0). Seed set declined from 18.9% of that in source populations at a distance of 25 m to 7.4% at 200 m. At a distance of 200 m seed set was still significantly higher in selfed plants, indicating long-distance effective pollen dispersal up to 200 m. Analyses of covariance suggested that bees contributed more than flies to this long-distance pollen dispersal. We found evidence that pollen dispersal to single-plant isolates was positively affected by the diversity and flower abundance of neighboring plant species in the intensively managed meadow. Furthermore, the decline of the dispersal was less steep when the source population of C. jacea was large.

Conclusions

We conclude that insect pollinators can effectively transfer pollen from source populations of C. jacea over at least 200 m, even when “recipient populations” consisted of single-plant isolates, suggesting that gene flow by pollen over this distance is very likely. Source population size and flowering environment surrounding recipient plants appear to be important factors affecting pollen dispersal in C. jacea. It is conceivable that most insect-pollinated plants in a network of restored sites within intensively managed grassland can form metapopulations, if distances between sites are of similar magnitude as tested here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号