首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Translational readthrough of nonsense codons is seen not only in organisms possessing one or more tRNA suppressors but also in strains lacking suppressors. Amber suppressor tRNAs have been reported to suppress only amber nonsense mutations, unlike ochre suppressors, which can suppress both amber and ochre mutations, essentially due to wobble base pairing. In an Escherichia coli strain carrying the lacZU118 episome (an ochre mutation in the lacZ gene) and harboring the supE44 allele, suppression of the ochre mutation was observed after 7 days of incubation. The presence of the supE44 lesion in the relevant strains was confirmed by sequencing, and it was found to be in the duplicate copy of the glnV tRNA gene, glnX. To investigate this further, an in vivo luciferase assay developed by D. W. Schultz and M. Yarus (J. Bacteriol. 172:595-602, 1990) was employed to evaluate the efficiency of suppression of amber (UAG), ochre (UAA), and opal (UGA) mutations by supE44. We have shown here that supE44 suppresses ochre as well as opal nonsense mutations, with comparable efficiencies. The readthrough of nonsense mutations in a wild-type E. coli strain was much lower than that in a supE44 strain when measured by the luciferase assay. Increased suppression of nonsense mutations, especially ochre and opal, by supE44 was found to be growth phase dependent, as this phenomenon was only observed in stationary phase and not in logarithmic phase. These results have implications for the decoding accuracy of the translational machinery, particularly in stationary growth phase.Translation termination is mediated by one of the three stop codons (UAA, UAG, or UGA). When such stop codons arise in coding sequences due to mutations, referred to as nonsense mutations, they lead to abrupt arrest of the translation process. However, the termination efficiency of such nonsense codons is not 100%, as certain tRNAs have the ability to read these nonsense codons. Genetic code ambiguity is seen in several organisms. Stop codons have been shown to have alternate roles apart from translation termination. In organisms from all three domains of life, UGA encodes selenocysteine through a specialized mechanism. In Methanosarcinaceae, UAG encodes pyrrolysine (3). UAA and UAG are read as glutamine codons in some green algae and ciliates such as Tetrahymena and Diplomonads (24), and UAG alone encodes glutamine in Moloney murine leukemia virus (32). UGA encodes cysteine in Euplotes; tryptophan in some ciliates, Mycoplasma species, Spiroplasma citri, Bacillus, and tobacco rattle virus; and an unidentified amino acid in Pseudomicrothorax dubius and Nyctotherus ovalis (30). In certain cases the context of the stop codon in translational readthrough has been shown to play a role; for example, it has been reported that in vitro in tobacco mosaic virus, UAG and UAA are misread by tRNATyr in a highly context-dependent manner (34, 9).Termination suppressors are of three types, i.e., amber, ochre, and opal suppressors, which are named based on their ability to suppress the three stop codons. Amber suppressors can suppress only amber codons, whereas ochre suppressors can suppress ochre codons (by normal base pairing) as well as amber codons (by wobbling) and opal suppressors can read opal and UGG tryptophan codon in certain cases. As described by Sambrook et al. (27), a few amber suppressors can also suppress ochre mutations by wobbling. The suppression efficiency varies among these suppressors, with amber suppressors generally showing increased efficiency over ochre and opal suppressors. supE44, an amber suppressor tRNA, is an allele of and is found in many commonly used strains of Escherichia coli K-12. Earlier studies have shown that supE44 is a weak amber suppressor and that its efficiency varies up to 35-fold depending on the reading context of the stop codon (8).Translational accuracy depends on several factors, which include charging of tRNAs with specific amino acids, mRNA decoding, and the presence of antibiotics such as streptomycin and mutations in ribosomal proteins which modulate the fidelity of the translational machinery. Among these, mRNA decoding errors have been reported to occur at a frequency ranging from about 10−3 to 10−4 per codon. Translational misreading errors also largely depend on the competition between cognate and near-cognate tRNA species. Poor availability of cognate tRNAs increases misreading (18).Several studies with E. coli and Saccharomyces cerevisiae have shown the readthrough of nonsense codons in suppressor-free cells. In a suppressor-free E. coli strain, it has been shown in vitro that glutamine is incorporated at the nonsense codons UAG and UAA (26). It has been reported that overexpression of wild-type tRNAGln in yeast suppresses amber as well as ochre mutations (25). In this study, we have confirmed the presence of an amber suppressor mutation in the glnX gene in a supE44 strain by sequence analysis. This was done essentially because we observed that supE44 could also suppress lacZ ochre mutations, albeit inefficiently. On further investigation using an in vivo luciferase reporter assay system for tRNA-mediated nonsense suppression (28), we found that the efficiency of suppression of amber lesion by supE44 is significantly higher than that reported previously in the literature. An increased ability to suppress ochre and opal nonsense mutations was observed in cells bearing supE44 compared to in the wild type. Such an effect was observed only in the stationary phase and was abolished in logarithmic phase.  相似文献   

2.
Summary A spontaneous mutant was isolated that harbors a weak suppressing activity towards a UAG mutation, together with an inability to grow at 43° C in rich medium. The mutation is shown to be associated with an increased misreading of UAG at certain codon contexts and UAA. UGA, missense or frameshift mutations do not appear to be misread to a similar extent. The mutation gives an increased efficiency to several amber tRNA suppressors with-out increasing their ambiguity towards UAA. The ochre suppressors SuB and Su5 are stimulated in their reading of both UAG and UAA with preference for UAG. An opal suppressor is not affected. The effect of the mutation on the efficiency of amber and ochre suppressors is dependent on the codon context of the nonsense codon.The mutated gene (uar) has been mapped and found to be recessive both with respect to suppressor-enhancing ability as well as for temperature sensitivity. The phenotype is partly suppressed by the ochre suppressor SuC. It is suggested that uar codes for a protein, which is involved in translational termination at UAG and UAA stop codons.  相似文献   

3.
Adaptive (starvation-associated) mutations occur in non-dividing cells and allow growth under the selective conditions imposed. We developed a new method for the determination of adaptive mutations in Escherichia coli. The system involves reversion to prototrophy of the argE3OC mutation and was tested on AB1157 strains mutated in the mutT and/or mutY genes. The bacteria that mutated adaptively grow into colonies on minimal medium plates devoid of arginine (starvation conditions) when incubated longer than 4 days. Using the replica plating method we solved the problem of discrimination between growth-dependent and adaptive argE3-->Arg+ revertants. Phenotype analysis and susceptibility of the Arg+ revertants to a set of T4 phage mutants create an additional possibility to draw a distinction between these two types of Arg+ revertants.  相似文献   

4.
Irradiation of organisms with UV light produces genotoxic and mutagenic lesions in DNA. Replication through these lesions (translesion DNA synthesis, TSL) in Escherichia coli requires polymerase V (Pol V) and polymerase III (Pol III) holoenzyme. However, some evidence indicates that in the absence of Pol V, and with Pol III inactivated in its proofreading activity by the mutD5 mutation, efficient TSL takes place. The aim of this work was to estimate the involvement of SOS-inducible DNA polymerases, Pol II, Pol IV and Pol V, in UV mutagenesis and in mutation frequency decline (MFD), a mechanism of repair of UV-induced damage to DNA under conditions of arrested protein synthesis. Using the argE3-->Arg(+) reversion to prototrophy system in E. coli AB1157, we found that the umuDC-encoded Pol V is the only SOS-inducible polymerase required for UV mutagenesis, since in its absence the level of Arg(+) revertants is extremely low and independent of Pol II and/or Pol IV. The low level of UV-induced Arg(+) revertants observed in the AB1157mutD5DumuDC strain indicates that under conditions of disturbed proofreading activity of Pol III and lack of Pol V, UV-induced lesions are bypassed without inducing mutations. The presented results also indicate that Pol V may provide substrates for MFD repair; moreover, we suggest that only those DNA lesions which result from umuDC-directed UV mutagenesis are subject to MFD repair.  相似文献   

5.
The effects of streptomycin and neomycin on the phenotypic suppression of frameshift mutations in the lacZ gene of Escherichia coli and on the efficiency of suppression of amber mutations in T4 phage by the informational supE tRNA nonsense suppressor were compared. Neomycin stimulated much more efficiently than streptomycin the phenotypic suppression of frameshift mutations. Because neomycin favors mismatches of the central codon base whereas streptomycin favors mismatches of the first codon base, this result suggests that mismatching of the central codon base pair and shifting of the reading frame are two correlated phenomena. In contrast, both streptomycin and neomycin stimulated about equally the efficiency of the tRNA nonsense suppressor, an effect probably related to their interference with the proofreading control in tRNA selection.  相似文献   

6.
It is shown that partial phenotypic suppression of two ochre mutations (argE3 andlacZU118) and an amber mutation (inargE) by sublethal concentrations of streptomycin in anrpsL + (streptomycin-sensitive) derivative of theEscherichia coli strain AB1157 greatly enhances their adaptive mutability under selection. Streptomycin also increases adaptive mutability brought about by theppm mutation described earlier. Inactivation ofrecA affects neither phenotypic suppression by streptomycin nor replication-associated mutagenesis but abolishes adaptive mutagenesis. These results indicate a causal relationship between allele leakiness and adaptive mutability.  相似文献   

7.
Mutations in the recA, recB, and recC genes of Escherichia coli K-12 were surveyed to ascertain whether or not they are suppressed by nonsense suppressors. Several mutations which map in or near the recA gene, but have not been called recA mutations, were also surveyed. An amber recB mutation, recB156, and an amber recC mutation, recC155, were isolated. One recB mutation, recB95, and four recC mutations, recC22, recC38, recC82, and recC83, were found to be suppressed by a UGA suppressor. In addition to the previously isolated amber recA mutation recA99, two other recA mutations, recA52 and recA123, were found to be suppressed by amber suppressor supD32 but not by supE44.  相似文献   

8.
Azure (or reverse amber) mutants grow normally on wild-type Escherichia coli but not on host strains harbouring a strong UAG suppressor mutation. Three different bacteriophage MS2 azure mutants obtained by treatment with nitrous acid have been characterized at the nucleotide sequence level. The 3′-end fragment of the 32P-labelled mutant genomes was isolated by DNA:RNA hybridization and treatment with nuclease S1, and was analyzed by mini-fingerprinting of the RNA. It is known that the wild-type MS2 polymerase gene ends with a UAG codon, followed seven triplets further by an in-phase UAA triplet. All three azure mutants contained an A → G transition in this UAA second stop codon of the polymerase gene, resulting in a second suppressible UAG (amber) codon. Analysis of revertants demonstrated that the azure mutation can be counteracted either by a true site reversion at the second stop or by the creation of a new stop signal for the polymerase gene, either UAA (ochre) or UGA (opal), before or at the first stop, or beyond the second stop. On the basis of these results, a mechanism for the azure mutation is proposed. Silent mutations (one in the coding region, three in the untranslated 3′-terminal sequence) have also been observed in these phage stocks.  相似文献   

9.
Survival of Escherichia coli K-12 AB1157 irradiated with UVC (UV(254 nm)) was enhanced after pre-treatment with a low-tension electric field (EF). The EF used was identical to the electrical field generated by the small intestine (myoelectrical migrating complex--MMC), registered in a healthy calf and transmitted into the memory of an EF generator. The EF emitted by the generator was transmitted via electrodes placed in shaken bacterial cultures. The protective effects of the EF on the E. coli survival after exposure to UV were: (i) observed only for the dnaJ(+)dnaK(+) strain, and not for the DeltadnaJdnaK heat shock mutant; (ii) strictly dependent on the temperature at which the bacteria were grown; (iii) most obvious when the bacteria were incubated at 37 degrees C. Moreover, the MMC-related EF and a higher temperature (40 degrees C) show a similar protective effect against UV-irradiation. The results point to the involvement of the heat shock response in the low-tension EF-induced protection of bacterial cells against UVC-irradiation. Additionally, treatment with the MMC-related EF affects total protein contents and their pattern in E. coli cells. The EF-treatment did not show any influence on the level of the argE3(ochre) --> Arg(+) reversions.  相似文献   

10.
gamma-Radiation mutagenesis (oxic versus anoxic) was examined in wild-type, umuC and recA strains of Escherichia coli K-12. Mutagenesis [argE3(Oc)----Arg+] was blocked in a delta (recA-srlR)306 strain at the same doses that induced mutations in umuC122::Tn5 and wild-type strains, indicating that both umuC-independent and umuC-dependent mechanisms function within recA-dependent misrepair. Analyses of various suppressor and back mutations that result in argE3 and hisG4 ochre reversion and an analysis of trpE9777 (+1 frameshift) reversion were performed on umuC and wild-type cells irradiated in the presence and absence of oxygen. While the umuC strain showed the gamma-radiation induction of base substitution and frameshifts when irradiated in the absence of oxygen, the umuC mutation blocked all oxygen-dependent base-substitution mutagenesis, but not all oxygen-dependent frameshift mutagenesis. For anoxically irradiated cells, the yields of GC----AT [i.e., at the supB and supE (Oc) loci] and AT----GC transitions (i.e., at the argE3 and hisG4 loci) were essentially umuC independent, while the yields of (AT or GC)----TA transversions (i.e., at the supC, supL, supM, supN and supX loci) were heavily umuC dependent. These data suggest new concepts about the nature of the DNA lesions and the mutagenic mechanisms that lead to gamma-radiation mutagenesis.  相似文献   

11.
R E Doerig  B Suter  M Gray    E Kubli 《The EMBO journal》1988,7(8):2579-2584
Seven xanthine dehydrogenase and cross-reacting material negative Drosophila melanogaster rosy stocks were screened for amber and ochre nonsense mutations. Amber and ochre nonsense suppressors were created by site-directed mutagenesis starting from a wild-type tRNA(Tyr) gene. The suppressor tRNA genes were subcloned into a pUChsneo transformation vector providing heat-shock controlled neomycin resistance. The seven rosy stocks were germline transformed with amber and ochre tDNA(Tyr), and the G1 generation was screened for Geneticin resistance. Surviving rosy516 flies transformed with the amber suppressor showed an eye colour intermediate between the original ry516 stock and the wild-type, suggesting that ry516 is an amber nonsense mutant. This was confirmed by sequencing the relevant part of the ry516 gene; the analysis revealed a C-to-T transition in a CAG glutamine codon at nucleotide 1522 of the wild-type rosy gene.  相似文献   

12.
Effects of surrounding sequence on the suppression of nonsense codons   总被引:61,自引:0,他引:61  
Using a lacI-Z fusion system, we have determined the efficiency of suppression of nonsense codons in the I gene of Escherichia coli by assaying beta-galactosidase activity. We examined the efficiency of four amber suppressors acting on 42 different amber (UAG) codons at known positions in the I gene, and the efficiency of a UAG suppressor at 14 different UGA codons. The largest effects were found with the amber suppressor supE (Su2), which displayed efficiencies that varied over a 35-fold range, and with the UGA suppressor, which displayed a 170-fold variation in efficiency. Certain UGA sites were so poorly suppressed (less than 0.2%) by the UGA suppressor that they were not originally detected as nonsense mutations. Suppression efficiency can be correlated with the sequence on the 3' side of the codon being suppressed, and in many cases with the first base on the 3' side. In general, codons followed by A or G are well suppressed, and codons followed by U or C are poorly suppressed. There are exceptions, however, since codons followed by CUG or CUC are well suppressed. Models explaining the effect of the surrounding sequence on suppression efficiency are considered in the Discussion and in the accompanying paper.  相似文献   

13.
Amber and ochre suppressor mutations in Salmonella typhimurium were selected. The amino acid insertions directed by the suppressors were inferred from suppression patterns of Escherichia coli lacI amber mutations. These amber mutations only respond to nonsense suppressors that direct the insertion of particular amino acids. Four Salmonella amber suppressors characterized insert serine, glutamine, tyrosine, and (probably) leucine. Of the three ochre suppressors characterized, two direct the insertion of tyrosine and one directs that of lysine. Of the three amber and two ochre suppressors which have been mapped by phage P22 cotransduction, all are located in the same relative position on the Salmonella map as the analogous E. coli suppressors are on the E. coli map.  相似文献   

14.
Premutational lesions produced by ultraviolet radiation in the Gln2 tRNA genes of E. coli B/r show differing sensitivities to a mutation avoidance phenomenon known as mutation frequency decline (MFD). A mutation event that changes the wild-type gene to an amber (UAG) suppressor is normally sensitive to MFD. Mutation of this amber suppressor to an ochre (UAA) suppressor is not sensitive to MFD. These two mutation events occur in the same anticodon region of the DNA. The dissimilarity of MFD sensitivity between these two mutations may result because the respective premutational photoproducts for the two are located in opposite strands of duplex DNA. To examine the effect of strand position of the premutational lesions on MFD, recombinant lambda phage were constructed that contained the amber suppressor as a mutation target in the two possible orientations. Comparison of MFD in bacterial lysogens containing either of the two types of recombinant prophage indicated that reversing the orientation of the target sequence relative to adjacent bacterial DNA had no effect on MFD. Since rotational inversion of the target sequence did not alter the sensitivity to MFD of mutation occurring at the cloned target gene, the antimutation process inherent to MFD can not be attributed to an asymmetrical interaction between the template strands and the DNA-replication complex.  相似文献   

15.
Su9 of Escherichia coli differs from tRNATrp by only a G to A transition in the D arm, yet has an enhanced ability to translate UGA by an unusual C X A wobble pairing. In order to examine the effects of this mutation on translation of the complementary and wobble codons in vivo, we constructed the gene for an amber (UAG) suppressing variant of Su9, trpT179, by making the additional nucleotide change required for an amber suppressor anticodon. The resultant suppressor tRNA, Su79, is a very strong amber suppressor. Furthermore, the D arm mutation enables Su79 to suppress ochre (UAA) codons by C X A wobble pairing. These data demonstrate that the effect of the D arm mutation on wobble pairing is not restricted to a CCA anticodon. The effect extends to the CUA anticodon of Su79, thereby creating a new type of ochre suppressor. The new coding activity of Su79 cannot be explained by alterations in the level of aminoacylation, steady-state tRNA concentration, or nucleotide modification. The A24 mutation could permit unorthodox wobble pairings by generally enhancing tRNA efficiency at all codons or by altering codon specificity.  相似文献   

16.
Prototrophic mutants produced by UV light in Escherichia coli K-12 strains with argE3(Oc) and hisG4(Oc) defects are distinguished as backmutations and specific nonsense suppressor mutations. In strains carrying a umuC defect, mutants are not produced unless irradiated cells are incubated and then exposed to photoreversing light (delayed photoreversal mutagenesis). The mutants thus produced are found to be specifically suppressor mutations and not backmutations. The suppressor mutations are primarily glutamine tRNA ochre suppressor mutations, which have been attributed previously to mutation targeted at T = C pyrimidine dimers. In a lexA51 recA441 strain, where the SOS mutagenesis functions are constitutive, targeting at dimers is confirmed by demonstrating that the induction of glutamine tRNA suppressor mutations is susceptible to photoreversal. In the same strain induction of backmutations is not susceptible to photoreversal. Thus delayed photoreversal mutagenesis produces suppressor mutations that can be targeted at pyrimidine dimers and does not produce backmutations that are not targeted at pyrimidine dimers. This correlation supports the idea that delayed photoreversal mutagenesis in umuC defective cells reflects a mutation process arrested at a targeting pyrimidine dimer photoproduct, which is the immediate cause of both the alteration in DNA sequence and the obstruction (unless repaired) to mutation fixation and ultimate expression.  相似文献   

17.
Nonsense suppressor tRNAs have been suggested as potential agents for human somatic gene therapy. Recent work from this laboratory has described significant effects of 3' codon context on the efficiency of human nonsense suppressors. A rapid increase in the number of reports of human diseases caused by nonsense codons, prompted us to determine how the spectrum of mutation to either UAG, UAA or UGA codons and their respective 3' contexts, might effect the efficiency of human suppressor tRNAs employed for purposes of gene therapy. This paper presents a survey of 179 events of mutations to nonsense codons which cause human germline or somatic disease. The analysis revealed a ratio of approximately 1:2:3 for mutation to UAA, UAG and UGA respectively. This pattern is similar, but not identical, to that of naturally occurring stop codons. The 3' contexts of new mutations to stop were also analysed. Once again, the pattern was similar to the contexts surrounding natural termination signals. These results imply there will be little difference in the sensitivity of nonsense mutations and natural stop codons to suppression by nonsense suppressor tRNAs. Analysis of the codons altered by nonsense mutations suggests that efforts to design human UAG suppressor tRNAs charged with Trp, Gln, and Glu; UAA suppressors charged with Gln and Glu, and UGA suppressors which insert Arg, would be an essential step in the development of suppressor tRNAs as agents of human somatic gene therapy.  相似文献   

18.
Of all the Escherichia coli tRNA genes that can give rise to an amber or an ochre suppressor by a single-nucleotide mutation, only the tRNAGlu genes have not been observed to do so. A study of the relationship between the sequences of tRNAs and the codons they translate predicts that the ochre suppressor derived from tRNAGlu would function very poorly on the ribosome. We have used site-specific mutagenesis to create the gene for such a tRNA in order to test this prediction. We cloned the tRNAGlu-Suoc gene into a high copy number plasmid, under control of the lacUV5 promoter. The mutant tRNA suppresses both amber and ochre nonsense mutations. As predicted, it is less efficient than other suppressors expressed under similar conditions.  相似文献   

19.
We have used site-specific mutagenesis to change the anticodon of a Xenopus laevis tyrosine tRNA gene so that it would recognize ochre codons. This tRNA gene is expressed when amplified in monkey cells as part of a SV40 recombinant and efficiently suppresses termination at both the ochre codon separating the adenovirus 2 hexon gene from a 23-kd downstream gene and the ochre codon at the end of the NS1 gene of influenza virus A/Tex/1/68. Termination at an amber codon of a NS1 gene of another influenza virus strain was not suppressed by the (Su+) ochre gene suggesting that in mammalian cells amber codons are not recognized by ochre suppressor tRNAs. Finally, microinjection into mammalian cells of both (Su+) ochre tRNA genes and selectible genes containing ochre nonsense mutations gives rise to colonies under selective conditions. We conclude that it should be possible to isolate a wide assortment of mammalian cell lines with ochre suppressor activity.  相似文献   

20.
The deleterious effect of defective alkB allele encoding 1meA/3meC dioxygenase on reactivation of MMS-treated phage DNA has been frequently studied. Here, it is shown that: (i) AlkB protects the cells not only against the genotoxic but also against the potent mutagenic activity of MMS; (ii) mutations arising in alkB-defected strains are umuDC-dependent, and deletion of umuDC dramatically reduce MMS-induced mutations resulting from the presence of 1meA/3meC in DNA; (iii) specificity of MMS-induced argE3-->Arg+ reversions in AB1157 alkB-defective cells are predominantly AT-->TA transversions and GC-->AT transitions; (iv) overproduction of AlkA and the resultant decrease in 3meA residues in DNA dramatically reduce MMS-induced mutations. This reduction is most probably a secondary effect of AlkA due to a decrease in 3meA residues in DNA and, in consequence, suppression of SOS induction and Pol V expression. Overproduction of UmuD'C proteins reverses this effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号