首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Female adults of the bagworm moth, Eumeta variegata, are completely wingless; by contrast, the male adults have functional wings. Sex-specific differences in the development of wing discs appear to arise during the 8th (penultimate) larval instar. We have previously found that the wing discs of female E. variegata terminate development and disappear during the prepupal period, whereas the wing discs of males continue to develop fully into adult wings. We have investigated the effects of ecdysteroid (20-hydroxyecdysone, 20E) when cultured with larval wing discs, which are normally attached to the larval integument of both male and female larvae. Male wing discs cultured with 20E undergo a remarkable transformation: the discs undergo apolysis and then differentiation. Female wing discs cultured with 20E also undergo apolysis; however, the disc cells enter apoptosis. We have observed condensed chromatin, fragmented nuclei, and secondary lysosomes in the epithelial cells of these female discs. This report establishes that the reduction of female wing discs arises through apoptotic events triggered by ecdysteroid in vitro.  相似文献   

2.
The process of wing disc development and degeneration in the bagworm moth Eumeta variegata was investigated histologically. Morphological differences between two sexes first appear in the penultimate (eighth) larval instar. In the male, wing discs proliferate rapidly in the penultimate larval instar and continue proliferating; a conspicuous peripodial epithelium forms in the last (ninth) larval instar. The hemopoietic organs break down in this stage and disappear completely by the prepupal stage. In the female, in contrast, the wing discs remain as in the previous (seventh) instar, without proliferation of cells inside. No peripodial epithelium forms in the penultimate instar or later. Hemopoietic organs are still attached to the wing discs in the last larval instar and the entire wing discs transform into a plain, thick epidermis in the prepupal period. It is suggested that the hemopoietic organs may prevent the wing discs from developing in E. variegata.  相似文献   

3.
Mating in Platynota stultana resulted in the termination of calling, the gradual reduction of pheromone in the pheromone glands to non-detectable levels (<0.1 ng/♀) within 14 h, and oviposition of the first batch of eggs 20–24 h after copulation. Decapitation of virgin females resulted in a similar decline in pheromone titre, and also eliminated oviposition and calling. Pheromone production appears to be controlled via the head. Mating probably terminates neural or hormonal input required for pheromone production and/or removes neural or hormonal inhibition of pheromone degradation. A juvenile hormone analogue (ZR-512) and juvenile hormones I, II and III applied exogenously to virgin females elicited oviposition comparable to mated females and terminated calling within 48 h. The juvenile hormone analogue also appeared to block pheromone production in virgin females. These results suggest that juvenile hormone may be involved in the switch from virgin to mated behaviour in this species.  相似文献   

4.
Summary Embryos ofPyrrhocoris apterus exposed to juvenile hormone mimics (JH) were examined throughout development to determine the progressive effects of treatment. Prior to blastokinesis whole experimental embryos did not differ morphologically from control embryos fixed at the same stage. Treated embryos failed to complete blastokinesis due to abnormal breakage of the extra-embryonic membranes.In the embryo-larva transition, JH exposure interfered with dorsal closure, with the consolidation of the nerve cord, and with the extension of appendages. Yet pigmentation and muscle differentiation occurred.These effects were interpreted and discussed with reference to the role of juvenile hormone in post-embryonic development.This is a portion of a dissertation submitted to the graduate school of Harvard University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy (1973). It was previously reported in abstract (Enslee and Riddiford, 1970). This research was supported by NIGMS Training Grant T01 GM 00036-09, 11, 12, 13 to E.C.E. and NSF grants GB 6730, GB 7966 to L.M.R.  相似文献   

5.
The Methoprene-tolerant (Met) protein has been established as a juvenile hormone (JH) receptor. Knockdown of the Met gene caused precocious metamorphosis and suppression of ovarian development. However, the function of Met in caste development of social insects is unclear. In termites, JH acts as a central factor for caste development, especially for soldier differentiation, which involves two molts from workers via a presoldier stage. Increased JH titer in workers is needed for the presoldier molt, and the high JH titer is maintained throughout the presoldier period. Although presoldiers have the fundamental morphological features of soldiers, the nature of the cuticle is completely different from that of soldiers. We expected that JH signals via Met are involved in soldier-specific morphogenesis of the head and mandibles during soldier differentiation, especially in the presoldier period, in natural conditions. To test this hypothesis, we focused on soldier differentiation in an incipient colony of the damp-wood termite Zootermopsis nevadensis. Met homolog (ZnMet) expression in heads increased just after the presoldier molt. This high expression was reduced by ZnMet double stranded (dsRNA) injection before the presoldier molt. Although this treatment did not cause any morphological changes in presoldiers, it caused strong effects on soldiers, their mandibles being significantly shorter and head capsules smaller than those of control soldiers. Injection of ZnMet dsRNA throughout the presoldier stage did not affect the formation of soldier morphology, including cuticle formation. These results suggested that the rapid increase in ZnMet expression and subsequent activation of JH signaling just after the presoldier molt are needed for the formation of soldier-specific weapons. Therefore, besides its established role in insect metamorphosis, the JH receptor signaling also underlies soldier development in termites.  相似文献   

6.
The effects of infection by a microsporidium, Vairimorpha necatrix (Kramer), on the endogenous levels of juvenile hormones in tomato moth (Lacanobia oleracea L.) larvae were investigated. Levels of juvenile hormone II (JH II) were 10-fold greater in the infected larvae on day two of the sixth stadium but no significant difference was observed on day seven. Juvenile hormone I (JH I) was also detected in day two and day seven sixth instar infected larvae but was not detected in non-infected larvae. The duration of the fifth and sixth stadia was significantly longer for infected larvae when compared with non-infected larvae. No evidence was found to suggest that supernumerary moults are a feature of infection by V. necatrix in L. oleracea larvae. Experiments were performed to determine whether the elevation in JH levels, which probably prevents pupation, is an adaptive mechanism of the microsporidium for extending the growth phase of the host, thereby allowing increased spore production. A proportion of infected larvae were collected on days 9 and 24 of the sixth stadium and spore extracts prepared from each larva. These days represent the average duration of the sixth stadium required for uninfected larvae to reach pupation, and the average number of days that V. necatrix-infected larvae survive in the sixth stadium before dying from infection. The mean spore yields from infected larvae 24 days into the sixth stadium were significantly higher than the spore yields obtained from day nine sixth instar larvae. The hypothesis that V. necatrix manipulates host endocrinology (i.e. prolong the host larval state to maximise spore yield) is discussed in context with the results obtained.  相似文献   

7.
Gas chromatographic-mass spectral analysis of extracts obtained from in vitro culture of isolated retrocerebral complexes obtained from adult females of the moth Heliothis virescens resulted in identification of methyl farnesoate as well as juvenile hormone III (JH III) but not JH III acid. Inhibition of JH biosynthesis by incubation of tissue in synthetic Manduca sexta allatostatin (Manse-AST, pGlu-Val-Arg-Phe-Arg-Gln-Cys-Tyr-Phe-Asn-Pro-Ile-Ser-Cys-Phe-COOH) reduced production of these chemicals to negligible levels. However, incubation of tissue in the presence of Manse-AST plus farnesol resulted in production of significant amounts of both methyl farnesoate and JH III. Tissue incubated in the presence of Manse-AST plus methyl farnesoate produced only JH III. The results indicated that methyl farnesoate is naturally produced by the corpora allata of adult females of Heliothis virescens. However, tissue incubated in the presence of Manse-AST plus JH III acid also produced JH III in amounts equivalent to that produced by tissue incubated with methyl farnesoate. Thus, both methyl farnesoate and JH III acid could serve as a precursor for biosynthesis of JH III.  相似文献   

8.
Abstract Effects of hexaflumuron at 10% lethal concentration (LC10) and LC25 on development and reproduction parameters of the diamondback moth, Plutella xylostella (Linnaeus, 1753) (Lep.: Yponomeutidae) were investigated. Estimated LC50, LC10 and LC25 values of leaf dip bioassay of hexaflumuron on the third instar larvae of the P. xylostella were 1.48, 0.59 and 0.91 mg/L, respectively. Hexaflumuron decreased pupal weight in the parent generation at sublethal concentrations but in the offspring generation, this effect was not observed. Sublethal concentrations increased egg, first and second larval instar and pupa developmental time and shortened life span of adults, but did not change the third and fourth larval instars and pre‐pupa developmental period. Also fecundity of females reduced significantly but hatchability of treatments and control were similar. Survival rate of pre‐adult stages declined significantly at LC25 concentration. Reproduction parameters such as reproductive rate (R0) and intrinsic rate of increase in sublethal concentrations were significantly lower compared with control, but gross reproduction rate (GRR) at the LC10 concentration was increased and it could be hormoligosis. Also hexaflumuron significantly increased doubling time (Dt). We conclude that the sublethal effects of hexaflumuron might exhibit significant effects on the population dynamics of P. xylostella.  相似文献   

9.
The effects of blue and red light, manganese sulfate concentration (100 and 5 M), and potassium iodide (5 and 0 M) on shoot and root production from subcultured shoots of the Vitis hybrid Remaily Seedless were studied.Shoot production was greater in blue light. It was increased by lowering the manganese sulfate concentration. The response to manganese in blue light was greatest when there was no potassium iodide addition.Root production was decreased by red light and lower manganese concentration.The effects of manganese, iodide and light spectrum on morphogenesis are discussed in relation to their known effects on IAA metabolism.  相似文献   

10.
Abstract

The juvenile hormone analogue ZR-619—ethyl 11-methoxy-3,7,11-trimethyl-(2E,4E-dodecadienethiolate) —produced morphological and physiological effects when fed via artificial diet to larvae of Epiphyas postvittana (Walker). Morphological effects included changes in larval head and antennal structures after instar V (supernumerary instars); deformation of pupal and adult structures, particularly in genitalia and wings; and development of individuals with varying mixtures of larval and pupal structures. Physiological effects included prolongation of larval life, increase in larval weight, increase in larval instars, and decrease in fecundity. Effects were directly related to dosage concentrations.  相似文献   

11.
Parasitization by the gregarious larval endoparasitoid Glyptapantles liparidis induces a dramatic increase in the hemolymph juvenile hormone (JH) titer (especially JH III) of its host larva, Lymantria dispar. Here, we investigated the role of the parasitoid larvae in JH synthesis and release by in vitro and in vivo experiments. GC-MS analyses confirmed that the rising hemolymph JH titer coincided with the time at which the parasitoids molt to the second larval instar. Peak values in host hemolymph titers were observed prior to parasitoid emergence, and titers dropped to negligible levels within 24 h after parasitoid emergence. Whole body extracts from excised second instar parasitoids yielded JH III and trace amounts of JH II. The in vitro secretory activity of the corpora allata (CA) of L. dispar larvae was not enhanced by parasitization. When the host's CA were separated by neck ligation, we found elevated JH III titers, but no JH II in the hemolymph of the posterior section, which contained the parasitoids. Parasitoids that were kept in in vitro culture produced and released only JH III. The parasitoids’ ability to secrete JH and to molt independently from their host's molting cycles indicates that at least second instar parasitoids are hormonally self-reliant.  相似文献   

12.
The olfactory reaction of larvae and moths was investigated towards 18 oils (6 natural oils and 12 commercial chemical oils). Some of these oils such as peppermint and camphor (natural oils) and eugenol and camphene (commercial oils) were repellent to both larvae and moths. Other oils such as strawberry and d-limonene were attractive to both larvae and moths.Some of the repellent oils were, therefore, tested for their effect on certain biological aspects of the insects.Eugenol and peppermint oils, each at the 0.01% conc., caused a significant depression in the fecundity of moth and decreased the percentage of egg hatchability. Eugenol oil was much more effective than peppermint oil at 1%. Dried (leaves, fruits or seeds) powder of 14 different plants species were tested in different concentrations with talcum powder (carrier material) against egg deposition. The results indicated that dried powders of Allium cepa, Curcuma longa, Colocasia antiqurum, Ocimum basilicum. Dodonaea viscose and Thuja orientalis played a highly significant role in reducing egg deposition. The most impressive effect was displayed by powders of D. viscose and A. cepa, which caused the highest depression in egg deposition as well as in the emerging offsprings. Ethanolic extracts of 11 plants indicated that extracts of Pithuranthos tortosus and Iphiona scabra caused the maximum inhibition of egg hatchability, followed by C. longa, Citrullus colocynthia and T. orientalis. Ethanolic extracts of Schinus terebenthiflius (leaves) and I. scabra caused the highest depression in the deposited eggs, as they played a remarkable role as ovipositor deterrents.The majority of the plant extracts at 1% conc. could protect potato tubers at different intervals according to the calculated tuber damage index as follows: Iphiopna > Pithuranthos > Curcuma > Schinus (fruits) Thuja > Schinus (leaves) > Dodonaea > Citrullus.  相似文献   

13.
14.
【目的】小菜蛾Plutella xylostella (L.)是全球十字花科植物上最重要的害虫。由于施药成本的增加以及对环境的破坏性危害,抗性栽培种成为控制小菜蛾的理想选择。本研究中,鉴于对花椰菜不同栽培种的抗感性缺乏充分的了解,我们评价了几个常见栽培种的抗性以及不同植物栽培种对害虫种群增长潜力的影响。【方法】在25±2℃, RH 65%±5% 和光周期16L∶8D的室内条件下,研究了小菜蛾P. xylostella在5种花椰菜栽培种(Smilla, White cloud, Buris, Galiblanka 和Tokita)上的生命表参数。【结果】不小菜蛾幼期发育历期变化范围从Smilla上的13.44 d至Buris上的15.88 d。在Buris上观察到最高的生殖力。在Smilla上饲养的小菜蛾种群内禀增长率(0.27±0.02)和有限增长率(1.32±0.13)最高,而倍增时间最短(2.50 d)。【结论】因此,与其他栽培种相比,在伊朗南部Smilla更适合小菜蛾存活和繁殖,在条件合适和天敌缺乏时该害虫的种群能快速增长。  相似文献   

15.
Neuropeptides from five different neuropeptide families [Manduca sexta allatostatin (Manse-AS), and Manse-AS deletion analogue(5-15), M. sexta allatotropin (Manse-AT), leucomyosuppressin, perisulfakinin, and myoinhibitory peptide I (MIP I)] were assayed for their ability to affect the development and food consumption of penultimate and last larval instars of two lepidopteran species, L. oleracea and S. littoralis. Injections of Manse-AS deletion analogue(5-15), Manse-AT, perisulfakinin, and MIP I had no observable effects on development, food consumption, or mortality compared to controls. Single injections of Manse-AS significantly reduced the weight gain and increased mortality of L. oleracea and S. littoralis larvae compared to controls. By contrast, feeding Manse-AS to L. oleracea had no such effects. These differences were probably due to the degradation of the peptide by digestive enzymes in the foregut of L. oleracea. In studies in vitro, perisulfakinin, and MIP I had no effect on the spontaneous foregut contractions of L. oleracea larvae. Leucomyosuppressin, however, had myoinhibitory effects on the foregut. Single injections of leucomyosuppressin significantly reduced the weight gain and food consumption of L. oleracea and S. littoralis larvae and increased mortality. These data suggest that the deleterious effects observed in vivo were due to the myoinhibition by Manse-AS and leucomyosuppressin of the normal peristaltic movements of the gut either by the intact peptide or by its cleavage products resulting from degradation in the haemolymph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号