首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Rice genome organization: the centromere and genome interactions   总被引:9,自引:0,他引:9  
Over the last decade, many varied resources have become available for genome studies in rice. These resources include over 4000 DNA markers, several bacterial artificial chromosome (BAC) libraries, P-1 derived artificial chromosome (PAC) libraries and yeast artificial chromosome (YAC) libraries (genomic DNA clones, filters and end-sequences), retrotransposon tagged lines, and many chemical and irradiated mutant lines. Based on these, high-density genetic maps, cereal comparative maps, YAC and BAC physical maps, and quantitative trait loci (QTL) maps have been constructed, and 93 % of the genome has also been sequenced. These data have revealed key features of the genetic and physical structure of the rice genome and of the evolution of cereal chromosomes. This Botanical Briefing examines aspects of how the rice genome is organized structurally, functionally and evolutionarily. Emphasis is placed on the rice centromere, which is composed of long arrays of centromere-specific repetitive sequences. Differences and similarities amongst various cereal centromeres are detailed. These indicate essential features of centromere function. Another view of various kinds of interactive relationships within and between genomes, which could play crucial roles in genome organization and evolution, is also introduced. Constructed genetic and physical maps indicate duplication of chromosomal segments and spatial association between specific chromosome regions. A genome-wide survey of interactive genetic loci has identified various reproductive barriers that may drive speciation of the rice genome. The significance of these findings in genome organization and evolution is discussed.  相似文献   

5.
The genomic distribution of 23 nuclear genes from three dicotyledons (pea, sunflower, tobacco) and five monocotyledons of the Gramineae family (barley, maize, rice, oat, wheat) was studied by localizing these genes in DNA fractions obtained by preparative centrifugation in Cs2SO4/BAMD density gradients. Each one of these genes (and of many other related genes and pseudogenes) was found to be located in DNA fragments (50-100 Kb in size) that were less than 1-2% GC apart from each other. This definitively demonstrates the existence of isochores in plant genomes, namely of compositionally homogeneous DNA regions at least 100-200 Kb in size. Moreover, the GC levels of the 23 coding sequences studied, of their first, second and third codon positions, and of the corresponding introns were found to be linearly correlated with the GC levels of the isochores harboring those genes. Compositional correlations displayed increasing slopes when going from second to first to third codon position with obvious effects on codon usage. Coding sequences for seed storage proteins and phytochrome of Gramineae deviate from the compositional correlations just described. Finally, CpG doublets of coding sequences were characterized by a shortage that decreased and vanished with increasing GC levels of the sequences. A number of these findings bear a striking similarity with results previously obtained for vertebrate genes.  相似文献   

6.
Although advances in molecular biology have allowed us to identify and describe many of the events associated with turning genes on, much less attention has generally been focussed on the related process of gene silencing. This is surprising as heritable gene inactivation plays an important role in determining cell lineage fates during development and defining their temporal order. Recent advances in the area of chromatin and chromosome organisation may have an impact on our understanding of cellular differentiation.  相似文献   

7.
8.
The genome of the multicapsid nuclear polyhedrosis virus of Orgyia pseudotsugata was mapped by examining overlapping HindIII fragments from cosmid clones which had been constructed from partial HindIII digests of viral DNA. Five OpMNPV cosmid clones containing fragments encompassing the entire OpMNPV genome were hydridized to blots of DNA from the multicapsid nuclear polyhedrosis virus of Autographa californica. The hybridization pattern indicated that the genomes of these viruses are similarly organized.  相似文献   

9.
Probing the architecture, mechanism, and dynamics of genome folding is fundamental to our understanding of genome function in homeostasis and disease. Most chromosome conformation capture studies dissect the genome architecture with population‐ and time‐averaged snapshots and thus have limited capabilities to reveal 3D nuclear organization and dynamics at the single‐cell level. Here, we discuss emerging imaging techniques ranging from light microscopy to electron microscopy that enable investigation of genome folding and dynamics at high spatial and temporal resolution. Results from these studies complement genomic data, unveiling principles underlying the spatial arrangement of the genome and its potential functional links to diverse biological activities in the nucleus.  相似文献   

10.
By using chromosome conformation capture technology, a recent study has revealed two alternative three-dimensional folding states of the human genome during the cell cycle.  相似文献   

11.
A report on the Jackson Laboratory 'Advances in nanostructural genomics II' meeting, Bar Harbor, USA, 3-6 October 2002.  相似文献   

12.
The linear sequence of genomes exists within the three-dimensional space of the cell nucleus. The spatial arrangement of genes and chromosomes within the interphase nucleus is nonrandom and gives rise to specific patterns. While recent work has begun to describe some of the positioning patterns of chromosomes and gene loci, the structural constraints that are responsible for nonrandom positioning and the relevance of spatial genome organization for genome expression are unclear. Here we discuss potential functional consequences of spatial genome organization and we speculate on the possible molecular mechanisms of how genomes are organized within the space of the mammalian cell nucleus.  相似文献   

13.
14.
In eukaryotic cells, all macromolecules that traffic between the nucleus and the cytoplasm cross the double nuclear membrane through nuclear pore complexes (NPCs). NPCs are elaborate gateways that allow efficient, yet selective, translocation of many different macromolecules. Their protein composition has been elucidated, but how exactly these nucleoporins come together to form the pore is largely unknown. Recent data suggest that NPCs are composed of an extremely stable scaffold on which more dynamic, exchangeable parts are assembled. These could be targets for molecular rearrangements that change nuclear pore transport properties and, ultimately, the state of the cell.  相似文献   

15.
Origin and organization of the zebrafish fate map   总被引:15,自引:0,他引:15  
We have analyzed lineages of cells labeled by intracellular injection of tracer dye during early zebrafish development to learn when cells become allocated to particular fates during development, and how the fate map is organized. The earliest lineage restriction was described previously, and segregates the yolk cell from the blastoderm in the midblastula. After one or two more cell divisions, the lineages of epithelial enveloping layer (EVL) cells become restricted to generate exclusively periderm. Following an additional division in the late blastula, deep layer (DEL) cells generate clones that are restricted to single deep embryonic tissues. The appearance of both the EVL and DEL restrictions could be causally linked to blastoderm morphogenesis during epiboly. A fate map emerges as the DEL cell lineages become restricted in the late blastula. It is similar in organization to that of an amphibian embryo. DEL cells located near the animal pole of the early gastrula give rise to ectodermal fates (including the definitive epidermis). Cells located near the blastoderm margin give rise to mesodermal and endodermal fates. Dorsal cells in the gastrula form dorsal and anterior structures in the embryo, and ventral cells in the gastrula form dorsal, ventral and posterior structures. The exact locations of progenitors of single cell types and of local regions of the embryo cannot be mapped at the stages we examined, because of variable cell rearrangements during gastrulation.  相似文献   

16.
The inner face of the nuclear envelope of metazoan cells is covered by a thin lamina consisting of a one-layered network of intermediate filaments interconnecting with a complex set of transmembrane proteins and chromatin associating factors. The constituent proteins, the lamins, have recently gained tremendous recognition, because mutations in the lamin A gene, LMNA, are the cause of a complex group of at least 10 different diseases in human, including the Hutchinson-Gilford progeria syndrome. The analysis of these disease entities has made it clear that besides cytoskeletal functions, the lamina has an important role in the "behaviour" of the genome and is, probably as a consequence of this function, intimately involved in cell fate decisions. Furthermore, these functions are related to the involvement of lamins in organizing the position and functional state of interphase chromosomes as well as to the occurrence of lamins and lamina-associated proteins within the nucleoplasm. However, the structural features of these lamins and the nature of the factors that assist them in genome organization present an exciting challenge to modern biochemistry and cell biology.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号