首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
MOTIVATION: Multiple alignment of highly divergent sequences is a challenging problem for which available programs tend to show poor performance. Generally, this is due to a scoring function that does not describe biological reality accurately enough or a heuristic that cannot explore solution space efficiently enough. In this respect, we present a new program, Align-m, that uses a non-progressive local approach to guide a global alignment. RESULTS: Two large test sets were used that represent the entire SCOP classification and cover sequence similarities between 0 and 50% identity. Performance was compared with the publicly available algorithms ClustalW, T-Coffee and DiAlign. In general, Align-m has comparable or slightly higher accuracy in terms of correctly aligned residues, especially for distantly related sequences. Importantly, it aligns much fewer residues incorrectly, with average differences of over 15% compared with some of the other algorithms. AVAILABILITY: Align-m and the test sets are available at http://bioinformatics.vub.ac.be  相似文献   

2.

Background

Genes and gene products are frequently annotated with Gene Ontology concepts based on the evidence provided in genomics articles. Manually locating and curating information about a genomic entity from the biomedical literature requires vast amounts of human effort. Hence, there is clearly a need forautomated computational tools to annotate the genes and gene products with Gene Ontology concepts by computationally capturing the related knowledge embedded in textual data.

Results

In this article, we present an automated genomic entity annotation system, GEANN, which extracts information about the characteristics of genes and gene products in article abstracts from PubMed, and translates the discoveredknowledge into Gene Ontology (GO) concepts, a widely-used standardized vocabulary of genomic traits. GEANN utilizes textual "extraction patterns", and a semantic matching framework to locate phrases matching to a pattern and produce Gene Ontology annotations for genes and gene products. In our experiments, GEANN has reached to the precision level of 78% at therecall level of 61%. On a select set of Gene Ontology concepts, GEANN either outperforms or is comparable to two other automated annotation studies. Use of WordNet for semantic pattern matching improves the precision and recall by 24% and 15%, respectively, and the improvement due to semantic pattern matching becomes more apparent as the Gene Ontology terms become more general.

Conclusion

GEANN is useful for two distinct purposes: (i) automating the annotation of genomic entities with Gene Ontology concepts, and (ii) providing existing annotations with additional "evidence articles" from the literature. The use of textual extraction patterns that are constructed based on the existing annotations achieve high precision. The semantic pattern matching framework provides a more flexible pattern matching scheme with respect to "exactmatching" with the advantage of locating approximate pattern occurrences with similar semantics. Relatively low recall performance of our pattern-based approach may be enhanced either by employing a probabilistic annotation framework based on the annotation neighbourhoods in textual data, or, alternatively, the statistical enrichment threshold may be adjusted to lower values for applications that put more value on achieving higher recall values.  相似文献   

3.
A novel algorithm for multiple alignment of biological sequences is suggested. At the first step the DotHelix procedure is employed for construction of motifs, i.e. continuous fragments of local similarity of various “thickness” and strength, and then these motifs are concatenated into chains consistent with the order of letters in the sequences. The algorithm is implemented in the MA-Tools program of the GeneBee package. An example illustrating the effectivity of the algorithm is presented.  相似文献   

4.

Background

In proteomics studies, liquid chromatography coupled to mass spectrometry (LC-MS) has proven to be a powerful technology to investigate differential expression of proteins/peptides that are characterized by their peak intensities, mass-to-charge ratio (m/z), and retention time (RT). The variable complexity of peptide mixtures and occasional drifts lead to substantial variations in m/z and RT dimensions. Thus, label-free differential protein expression studies by LC-MS technology require alignment with respect to both RT and m/z to ensure that same proteins/peptides are compared from multiple runs.

Methods

In this study, we propose a new strategy to align LC-MALDI-TOF data by combining quality threshold cluster analysis and support vector regression. Our method performs alignment on the basis of measurements in three dimensions (RT, m/z, intensity).

Results and conclusions

We demonstrate the suitability of our proposed method for alignment of LC-MALDI-TOF data through a previously published spike-in dataset and a new in-house generated spike-in dataset. A comparison of our method with other methods that utilize only RT and m/z dimensions reveals that the use of intensity measurements enhances alignment performance.
  相似文献   

5.
The submission of multiple sequence alignment data to EMBL has grown 30-fold in the past 10 years, creating a problem of archiving them. The EBI has developed a new public database of multiple sequence alignments called EMBL-Align. It has a dedicated web-based submission tool, Webin-Align. Together they represent a comprehensive data management solution for alignment data. Webin-Align accepts all the common alignment formats and can display data in CLUSTALW format as well as a new standard EMBL-Align flat file format. The alignments are stored in the EMBL-Align database and can be queried from the EBI SRS (Sequence Retrieval System) server. AVAILABILITY: Webin-Align: http://www.ebi.ac.uk/embl/Submission/align_top.html, EMBL-Align: ftp://ftp.ebi.ac.uk/pub/databases/embl/align, http://srs.ebi.ac.uk/  相似文献   

6.
A multiple alignment program for protein sequences   总被引:1,自引:0,他引:1  
A program for the multiple alignment of protein sequences ispresented. The program is an extension of the fast alignmentprogram by Wilbur et al. (1984) into higher dimensions. Theuse of hash procedures on fragments of the protein sequencesincreases the speed of calculation. Thereby we also take intoaccount fragments which are present in some, but not in all,sequences considered. The results of some multiple alignmentsare given. Received on September 11, 1986; accepted on March 18, 1987  相似文献   

7.
In the growing field of genomics, multiple alignment programs are confronted with ever increasing amounts of data. To address this growing issue we have dramatically improved the running time and memory requirement of Kalign, while maintaining its high alignment accuracy. Kalign version 2 also supports nucleotide alignment, and a newly introduced extension allows for external sequence annotation to be included into the alignment procedure. We demonstrate that Kalign2 is exceptionally fast and memory-efficient, permitting accurate alignment of very large numbers of sequences. The accuracy of Kalign2 compares well to the best methods in the case of protein alignments while its accuracy on nucleotide alignments is generally superior. In addition, we demonstrate the potential of using known or predicted sequence annotation to improve the alignment accuracy. Kalign2 is freely available for download from the Kalign web site (http://msa.sbc.su.se/).  相似文献   

8.
Individual genome scans tend to have low power and can produce markedly biased estimates of QTL effects. Further, the confidence interval for their location is often prohibitively large for subsequent fine mapping and positional cloning. Given that a large number of genome scans have been conducted, not to mention the large number of variables and subsets tested, it is difficult to confidently rule out type 1 error as an explanation for significant effects even when there is apparent replication in a separate data set. We adapted Empirical Bayes (EB) methods [1] to analyze data from multiple genome scans simultaneously and alleviate each of these problems while still allowing for different QTL population effects across studies. We investigated the effects of using the EB method to include data from background studies to update the results of a single study of interest via simulation and demonstrated that it has a stable confidence level over a wide range of parameters defining the background studies and increased the power to detect linkage, even when some of the background studies were null or had QTL effect at other markers. This EB method for incorporating data from multiple studies into genome scan analyses seems promising.  相似文献   

9.
MOTIVATION: Structural RNA genes exhibit unique evolutionary patterns that are designed to conserve their secondary structures; these patterns should be taken into account while constructing accurate multiple alignments of RNA genes. The Sankoff algorithm is a natural alignment algorithm that includes the effect of base-pair covariation in the alignment model. However, the extremely high computational cost of the Sankoff algorithm precludes its application to most RNA sequences. RESULTS: We propose an efficient algorithm for the multiple alignment of structural RNA sequences. Our algorithm is a variant of the Sankoff algorithm, and it uses an efficient scoring system that reduces the time and space requirements considerably without compromising on the alignment quality. First, our algorithm computes the match probability matrix that measures the alignability of each position pair between sequences as well as the base pairing probability matrix for each sequence. These probabilities are then combined to score the alignment using the Sankoff algorithm. By itself, our algorithm does not predict the consensus secondary structure of the alignment but uses external programs for the prediction. We demonstrate that both the alignment quality and the accuracy of the consensus secondary structure prediction from our alignment are the highest among the other programs examined. We also demonstrate that our algorithm can align relatively long RNA sequences such as the eukaryotic-type signal recognition particle RNA that is approximately 300 nt in length; multiple alignment of such sequences has not been possible by using other Sankoff-based algorithms. The algorithm is implemented in the software named 'Murlet'. AVAILABILITY: The C++ source code of the Murlet software and the test dataset used in this study are available at http://www.ncrna.org/papers/Murlet/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

10.
We introduce a new approach to investigate problem of DNA sequence alignment. The method consists of three parts: (i) simple alignment algorithm, (ii) extension algorithm for largest common substring, (iii) graphical simple alignment tree (GSA tree). The approach firstly obtains a graphical representation of scores of DNA sequences by the scoring equation R0*RS0*ST0*(a+bk). Then a GSA tree is constructed to facilitate solving the problem for global alignment of 2 DNA sequences. Finally we give several practical examples to illustrate the utility and practicality of the approach.  相似文献   

11.
The multiple codes of nucleotide sequences   总被引:4,自引:0,他引:4  
Nucleotide sequences carry genetic information of many different kinds, not just instructions for protein synthesis (triplet code). Several codes of nucleotide sequences are discussed including: (1) the translation framing code, responsible for correct triplet counting by the ribosome during protein synthesis; (2) the chromatin code, which provides instructions on appropriate placement of nucleosomes along the DNA molecules and their spatial arrangement; (3) a putative loop code for single-stranded RNA-protein interactions. The codes are degenerate and corresponding messages are not only interspersed but actually overlap, so that some nucleotides belong to several messages simultaneously. Tandemly repeated sequences frequently considered as functionless “junk” are found to be grouped into certain classes of repeat unit lengths. This indicates some functional involvement of these sequences. A hypothesis is formulated according to which the tandem repeats are given the role of weak enhancer-silencers that modulate, in a copy number-dependent way, the expression of proximal genes. Fast amplification and elimination of the repeats provides an attractive mechanism of species adaptation to a rapidly changing environment.  相似文献   

12.
MOTIVATION: A tool that simultaneously aligns multiple protein sequences, automatically utilizes information about protein domains, and has a good compromise between speed and accuracy will have practical advantages over current tools. RESULTS: We describe COBALT, a constraint based alignment tool that implements a general framework for multiple alignment of protein sequences. COBALT finds a collection of pairwise constraints derived from database searches, sequence similarity and user input, combines these pairwise constraints, and then incorporates them into a progressive multiple alignment. We show that using constraints derived from the conserved domain database (CDD) and PROSITE protein-motif database improves COBALT's alignment quality. We also show that COBALT has reasonable runtime performance and alignment accuracy comparable to or exceeding that of other tools for a broad range of problems. AVAILABILITY: COBALT is included in the NCBI C++ toolkit. A Linux executable for COBALT, and CDD and PROSITE data used is available at: ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/cobalt  相似文献   

13.
Organization of nucleotide sequences in the chicken genome   总被引:3,自引:0,他引:3  
The four major components of chicken DNA were prepared by density gradient centrifugation and characterized in several basic properties: relative amounts, dG + dC content, buoyant densities, compositional heterogeneity, and reassociation kinetics. While the relative amounts and the compositions of the major components of chicken DNA were similar to those found in mammalian genomes, their compositional heterogeneities were found to be narrower. The relative amounts of interspersed repeated and unique sequences were strikingly different in different components and also different from those found in the corresponding major components of mouse and human DNAs. If one takes into consideration that major DNA components (a) account for practically all of main-band DNA and (b) derive by preparative breakage from very long DNA segments of fairly homogeneous composition, the isochores, our findings indicate that the distribution of interspersed repeats is different in different chromosomal regions and is species-specific.  相似文献   

14.
R-Coffee is a multiple RNA alignment package, derived from T-Coffee, designed to align RNA sequences while exploiting secondary structure information. R-Coffee uses an alignment-scoring scheme that incorporates secondary structure information within the alignment. It works particularly well as an alignment improver and can be combined with any existing sequence alignment method. In this work, we used R-Coffee to compute multiple sequence alignments combining the pairwise output of sequence aligners and structural aligners. We show that R-Coffee can improve the accuracy of all the sequence aligners. We also show that the consistency-based component of T-Coffee can improve the accuracy of several structural aligners. R-Coffee was tested on 388 BRAliBase reference datasets and on 11 longer Cmfinder datasets. Altogether our results suggest that the best protocol for aligning short sequences (less than 200 nt) is the combination of R-Coffee with the RNA pairwise structural aligner Consan. We also show that the simultaneous combination of the four best sequence alignment programs with R-Coffee produces alignments almost as accurate as those obtained with R-Coffee/Consan. Finally, we show that R-Coffee can also be used to align longer datasets beyond the usual scope of structural aligners. R-Coffee is freely available for download, along with documentation, from the T-Coffee web site (www.tcoffee.org).  相似文献   

15.
With various ‘omics’ data becoming available recently, new challenges and opportunities are provided for researches on the assembly of next-generation sequences. As an attempt to utilize novel opportunities, we developed a next-generation sequence clustering method focusing on interdependency between genomics and proteomics data. Under the assumption that we can obtain next-generation read sequences and proteomics data of a target species, we mapped the read sequences against protein sequences and found physically adjacent reads based on a machine learning-based read assignment method. We measured the performance of our method by using simulated read sequences and collected protein sequences of Escherichia coli (E. coli). Here, we concentrated on the actual adjacency of the clustered reads in the E. coli genome and found that (i) the proposed method improves the performance of read clustering and (ii) the use of proteomics data does have a potential for enhancing the performance of genome assemblers. These results demonstrate that the integrative approach is effective for the accurate grouping of adjacent reads in a genome, which will result in a better genome assembly.  相似文献   

16.
MOTIVATION: We consider the problem of multiple alignment of protein sequences with the goal of achieving a large SP (Sum-of-Pairs) score. RESULTS: We introduce a new graph-based method. We name our method QOMA (Quasi-Optimal Multiple Alignment). QOMA starts with an initial alignment. It represents this alignment using a K-partite graph. It then improves the SP score of the initial alignment through local optimizations within a window that moves greedily on the alignment. QOMA uses two parameters to permit flexibility in time/accuracy trade off: (1) The size of the window for local optimization. (2) The sparsity of the K-partite graph. Unlike traditional progressive methods, QOMA is independent of the order of sequences. The experimental results on BAliBASE benchmarks show that QOMA produces higher SP score than the existing tools including ClustalW, Probcons, Muscle, T-Coffee and DCA. The difference is more significant for distant proteins. AVAILABILITY: The software is available from the authors upon request.  相似文献   

17.
The possibility of gene tree incongruence in a species-level phylogenetic analysis of the genus Ips (Coleoptera: Scolytidae) was investigated based on mitochondrial 16S rRNA (16S) and nuclear elongation factor-1 alpha (EF-1 alpha) sequences, and existing cytochrome oxidase I (COI) and nonmolecular data sets. Separate cladistic analyses of the data partitions resulted in partially discordant most-parsimonious trees but revealed only low conflict of the phylogenetic signal. Interactions among data partitions, which differed in the extent of sequence divergence (COI > 16S > EF-1 alpha), base composition, and homoplasy, revealed that much of the branch support emerges only in the simultaneous analysis, particularly for deeper nodes in the tree, which are almost entirely supported through "hidden support" (sensu Gatesy et al., Cladistics 15:271-313, 1999). Apparent incongruence between data partitions is in part due to suboptimal alignments and bias of character transformations, but little evidence supports invoking incongruent phylogenetic histories of genetic loci. There is also no justification for eliminating or downweighting gene partitions on the basis of their apparent homoplasy or incongruence with other partitions, because the signal emerges only in the interaction of all data. In comparison with traditional taxonomy, the pini, plastographus, and perturbatus groups are polyphyletic, whereas the grandicollis group is monophyletic except for inclusion of the (monophyletic) calligraphus group. The latidens group and some European species are distantly related and closer to other genera within Ipini. Our robust cladogram was used to revise the classification of Ips. We provide new diagnoses for Ips and four subgeneric taxa.  相似文献   

18.
Motivations: Biclustering is a clustering method that simultaneously clusters both the domain and range of a relation. A challenge in multiple sequence alignment (MSA) is that the alignment of sequences is often intended to reveal groups of conserved functional subsequences. Simultaneously, the grouping of the sequences can impact the alignment; precisely the kind of dual situation biclustering is intended to address. RESULTS: We define a representation of the MSA problem enabling the application of biclustering algorithms. We develop a computer program for local MSA, BlockMSA, that combines biclustering with divide-and-conquer. BlockMSA simultaneously finds groups of similar sequences and locally aligns subsequences within them. Further alignment is accomplished by dividing both the set of sequences and their contents. The net result is both a multiple sequence alignment and a hierarchical clustering of the sequences. BlockMSA was tested on the subsets of the BRAliBase 2.1 benchmark suite that display high variability and on an extension to that suite to larger problem sizes. Also, alignments were evaluated of two large datasets of current biological interest, T box sequences and Group IC1 Introns. The results were compared with alignments computed by ClustalW, MAFFT, MUCLE and PROBCONS alignment programs using Sum of Pairs (SPS) and Consensus Count. Results for the benchmark suite are sensitive to problem size. On problems of 15 or greater sequences, BlockMSA is consistently the best. On none of the problems in the test suite are there appreciable differences in scores among BlockMSA, MAFFT and PROBCONS. On the T box sequences, BlockMSA does the most faithful job of reproducing known annotations. MAFFT and PROBCONS do not. On the Intron sequences, BlockMSA, MAFFT and MUSCLE are comparable at identifying conserved regions. AVAILABILITY: BlockMSA is implemented in Java. Source code and supplementary datasets are available at http://aug.csres.utexas.edu/msa/  相似文献   

19.
Fuzzy classification of nucleotide sequences and bacterial evolution   总被引:5,自引:0,他引:5  
A new method for reconstructing evolutionary relationship among bacteria by use of rRNA sequence data is proposed. The method is based on the concept of fuzzy classification of probabilitiesp(i), p(i/j) andp(i/j*) (i=A,G,C,U) of each sequence. The resulting partition tree shares common features of previous works but has some new peculiarities.  相似文献   

20.

Background  

In this paper, we introduce a progressive corner cutting method called Reticular Alignment for multiple sequence alignment. Unlike previous corner-cutting methods, our approach does not define a compact part of the dynamic programming table. Instead, it defines a set of optimal and suboptimal alignments at each step during the progressive alignment. The set of alignments are represented with a network to store them and use them during the progressive alignment in an efficient way. The program contains a threshold parameter on which the size of the network depends. The larger the threshold parameter and thus the network, the deeper the search in the alignment space for better scored alignments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号