首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background

The movement of mobile elements among species by horizontal transposon transfer (HTT) influences the evolution of genomes through the modification of structure and function. Helitrons are a relatively new lineage of DNA-based (class II) transposable elements (TEs) that propagate by rolling-circle replication, and are capable of acquiring host DNA. The rapid spread of Helitrons among animal lineages by HTT is facilitated by shuttling in viral particles or by unknown mechanisms mediated by close organism associations (e.g. between hosts and parasites).

Results

A non-autonomous Helitron independently annotated as BmHel-2 from Bombyx mori and the MITE01 element from Ostrinia nubilalis was predicted in the genomes of 24 species in the insect Order Lepidoptera. Integrated Helitrons retained ≥ 65% sequence identity over a 250 bp consensus, and were predicted to retain secondary structures inclusive of a 3′-hairpin and a 5′-subterminal inverted repeat. Highly similar Hel-2 copies were predicted in the genomes of insects and associated viruses, which along with a previous documented case of real-time virus-insect cell line transposition suggests that this Helitron has likely propagated by HTT.

Conclusions

These findings provide evidence that insect virus may mediate the HTT of Helitron-like TEs. This movement may facilitate the shuttling of DNA elements among insect genomes. Further sampling is required to determine the putative role of HTT in insect genome evolution.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1318-6) contains supplementary material, which is available to authorized users.  相似文献   

2.
We have identified and characterized a new class of polymorphic markers for the canine genome from a simple tetranucleotide repeat sequence, (GAAA)n. Genetic markers derived from this repeat are highly polymorphic compared with other canine microsatellites, yet are stable enough to be useful for following Mendelian inheritance in multigeneration pedigrees. We show further that (GAAA)n repeats are distributed throughout the canine genome and occur with sufficient frequency to be useful in the development of a framework map of the canine genome. Received: 25 October 1995 / Accepted: 17 January 1996  相似文献   

3.
A total of seven microsatellites out of 88 isolated from a genomic library enriched for (CA)n and (GA)n repeats were characterized in the Mediterranean marine sponge Scopalina lophyropoda. The microsatellite motifs were large (34.81 ± 13.9 bp) and imperfect. The seven microsatellite loci were screened in 30 individuals collected from Blanes, northwestern Mediterranean. All of them were polymorphic (allele numbers and observed heterozygosities ranged from 3 to 6 and from 0.16 to 0.76, respectively). No significant linkage disequilibrium between pairs of loci and no departure from Hardy–Weinberg equilibrium were found. These markers are therefore promising for studies of the population structure of the species.  相似文献   

4.
Males are homogametic (ZZ) and females are heterogametic (WZ) with respect to the sex chromosomes in many species of butterflies and moths (insect order Lepidoptera). Genes on the Z chromosome influence traits involved in larval development, environmental adaptation, and reproductive isolation. To facilitate the investigation of these traits across Lepidoptera, we developed 43 degenerate primer pairs to PCR amplify orthologs of 43 Bombyx mori Z chromosome-linked genes. Of the 34 orthologs that amplified by PCR in Ostrinia nubilalis, 6 co-segregated with the Z chromosome anchor markers kettin (ket) and lactate dehydrogenase (ldh), and produced a consensus genetic linkage map of ~89 cM in combination with 5 AFLP markers. The O. nubilalis and B. mori Z chromosomes are comparatively co-linear, although potential gene inversions alter terminal gene orders and a translocation event disrupted synteny at one chromosome end. Compared to B. mori orthologs, O. nubilalis Z chromosome-linked genes showed conservation of tissue-specific and growth-stage-specific expression, although some genes exhibited species-specific expression across developmental stages or tissues. The O. nubilalis Z chromosome linkage map provides new tools for isolating quantitative trait loci (QTL) involved in sex-linked traits that drive speciation and it exposes genome rearrangements as a possible mechanism for differential gene regulation in Lepidoptera.  相似文献   

5.
We recently described a maize mutant caused by an insertion of a Helitron type transposable element (Lal, S.K., Giroux, M.J., Brendel, V., Vallejos, E. and Hannah, L.C., 2003, Plant Cell, 15: 381–391). Here we describe another Helitron insertion in the barren stalk1 gene of maize. The termini of a 6525 bp insertion in the proximal promoter region of the mutant reference allele of maize barren stalk1 gene (ba1-ref) shares striking similarity to the Helitron insertion we reported in the Shrunken-2 gene. This insertion is embedded with pseudogenes that differ from the pseudogenes discovered in the mutant Shrunken-2 insertion. Using the common terminal ends of the mutant insertions as a query, we discovered other Helitron insertions in maize BAC clones. Based on the comparison of the insertion site and PCR amplified genomic sequences, these elements inserted between AT dinucleotides. These putative non-autonomous Helitroninsertions completely lacked sequences similar to RPA (replication protein A) and DNA Helicases reported in other species. A blastn analysis indicated that both the 5 and 3 termini of Helitrons are repeated in the maize genome. These data provide strong evidence that Helitron type transposable elements are active and may have played an essential role in the evolution and expansion of the maize genome.  相似文献   

6.
Abundance, variability and chromosomal location of microsatellites in wheat   总被引:51,自引:0,他引:51  
The potential of microsatellite sequences as genetic markers in hexaploid wheat (Triticum aestivum) was investigated with respect to their abundance, variability, chromosomal location and usefulness in related species. By screening a lambda phage library, the total number of (GA)n blocks was estimated to be 3.6 x 104 and the number of (GT)n blocks to be 2.3 x 104 per haploid wheat genome. This results in an average distance of approximately 270 kb between these two microsatellite types combined. Based on sequence analysis data from 70 isolated microsatellites, it was found that wheat microsatellites are relatively long containing up to 40 dinucleotide repeats. Of the tested primer pairs, 36% resulted in fragments with a size corresponding to the expected length of the sequenced microsatellite clone. The variability of 15 microsatellite markers was investigated on 18 wheat accessions. Significantly, more variation was detected with the microsatellite markers than with RFLP markers with, on average, 4.6 different alleles per microsatellite. The 15 PCR-amplified microsatellites were further localized on chromosome arms using cytogenetic stocks of Chinese Spring. Finally, the primers for the 15 wheat microsatellites were used for PCR amplification with rye (Secale cereale) and barley accessions (Hordeum vulgare, H. spontaneum). Amplified fragments were observed for ten primer pairs with barley DNA and for nine primer pairs with rye DNA as template. A microsatellite was found by dot blot analysis in the PCR products of barley and rye DNA for only one primer pair.  相似文献   

7.
Microsatellites have many desirable marker properties. There has been no report of the development and utilization of microsatellite markers in oat. The objectives of the present study were to construct oat microsatellite-enriched libraries, to isolate microsatellite sequences and evaluate their level of polymorphism in Avena species and oat cultivars. One hundred clones were isolated and sequenced from three oat microsatellite-libraries enriched for either (AC/TG) n , (AG/TC) n or (AAG/TTC) n repeats. Seventy eight clones contained microsatellites. A database search showed that 42% of the microsatellite flanking sequences shared significant homology with various repetitive elements. Alu and retrotransposon sequences were the two largest groups associated with the microsatellites. Forty four primer sets were used to amplify the DNA from 12 Avena species and 20 Avena sativa cultivars. Sixty two percent of the primers revealed polymorphism among the Avena species, but only 36% among the cultivars. In the cultivars, the microsatellites associated with repetitive elements were less polymorphic than those not associated with repetitive elements. Only 25% of the microsatellites associated with repetitive elements were polymorphic, while 46% of the microsatellites not associated with repetitive elements showed polymorphism in the cultivars. An average of four alleles with a polymorphism information content (PIC) of 0.57 per primer set was detected among the Avena species, and 3.8 alleles with a PIC of 0.55 among the cultivars. In addition, 54 barley microsatellite primers were tested in Avena species and 26% of the primers amplified microsatellites from oat. Using microsatellite polymorphisms, dendrograms were constructed showing phylogenetic relationships among Avena species and genetic relationships among oat cultivars. Received: 1 November 1999 / Accepted: 14 April 2000  相似文献   

8.
Paucity of polymorphic molecular markers in chickpea (Cicer arietinum L.) has been a major limitation in the improvement of this important legume. Hence, in an attempt to develop sequence-tagged microsatellite sites (STMS) markers from chickpea, a microsatellite enriched library from the C. arietinum cv. Pusa362 nuclear genome was constructed for the identification of (CA/GT) n and (CT/GA) n microsatellite motifs. A total of 92 new microsatellites were identified, of which 74 functional STMS primer pairs were developed. These markers were validated using 9 chickpea and one C. reticulatum accession. Of the STMS markers developed, 25 polymorphic markers were used to analyze the intraspecific genetic diversity within 36 geographically diverse chickpea accessions. The 25 primer pairs amplified single loci producing a minimum of 2 and maximum of 11 alleles. A total of 159 alleles were detected with an average of 6.4 alleles per locus. The observed and expected heterozygosity values averaged 0.32 (0.08–0.91) and 0.74 (0.23–0.89) respectively. The UPGMA based dendrogram was able to distinguish all the accessions except two accessions from Afghanistan establishing that microsatellites could successfully detect intraspecific genetic diversity in chickpea. Further, cloning and sequencing of size variant alleles at two microsatellite loci revealed that the variable numbers of AG repeats in different alleles were the major source of polymorphism. Point mutations were found to occur both within and immediately upstream of the long tracts of perfect repeats, thereby bringing about a conversion of perfect motifs into imperfect or compound motifs. Such events possibly occurred in order to limit the expansion of microsatellites and also lead to the birth of new microsatellites. The microsatellite markers developed in this study will be useful for genetic diversity analysis, linkage map construction as well as for depicting intraspecific microsatellite evolution.  相似文献   

9.
Microsatellite loci were isolated in Haliotis fulgens using a (CT)n enriched‐genomic library. From 33 sequenced clones, 21 microsatellites regions were identified, 15 with the expected (CT)n. Eight microsatellite loci were amplified, six of which were polymorphic with a range of three to 20 alleles, and five cross‐amplified in two other species (Haliotis rufescens and Haliotis corrugata). These microsatellites will be useful as population genetic markers in the three species.  相似文献   

10.
We isolated and characterized 11 novel microsatellite loci to study paternity in the Australian musk duck (Biziura lobata), using nonradioactive PCR‐based techniques to screen GA and GAAA repeats enriched genomic DNA libraries. Nine of 11 loci showed no evidence of null alleles and were variable (mean HE = 0.825, mean number of alleles = 9). This set of nine loci is suitable for paternity assignment (exclusion probability for nine unlinked loci = 0.9999). We also demonstrated that many of these loci cross‐amplify in various other waterfowl species.  相似文献   

11.
Mini- and microsatellites, comprising tandemly repeated short nucleotide sequences, are abundant dispersed repetitive elements that are ubiquitous in eukaryotic genomes. In humans and other bisexual species hypervariable mini- and microsatellite loci provide highly informative systems for monitoring of germline and somatic instability. However, little is known about the mechanisms by which these loci mutate in species that lack effective genetic recombination. Here, multilocus DNA fingerprinting was used to study M13 minisatellite and (GATA) n microsatellite instability in the parthenogenetic Caucasian rock lizard Darevskia unisexualis (Lacertidae). DNA fingerprinting of 25 parthenogenetic families, from six isolated populations in Armenia (comprising a total of 84 siblings), using the oligonucleotide (GATA)4 as a hybridization probe, revealed mutant fingerprinting phenotypes in 13 siblings that differed from their mothers in several restriction DNA fragments. In three families (8 siblings), the mutations were present in the germline. Moreover, the mutant fingerprint phenotypes detected in siblings were also present in population DNA samples. No intrafamily variations in DNA fingerprint patterns were observed with the M13 minisatellite probe. Estimates of the mutation rate for (GATA) n microsatellite loci in D. unisexualis showed that it was as high as that seen in some bisexual species, reaching 15% per sibling or 0.95% per microsatellite band. Furthermore, in one case, a somatic (GATA) n microsatellite mutation was observed in an adult lizard. These findings directly demonstrate that mutations in (GATA) n microsatellite loci comprise an important source of genetic variation in parthenogenetic populations of D. unisexualis.Communicated by G. P. Georgiev  相似文献   

12.
Ten polymorphic dinucleotide (CA/GT and GA/CT) microsatellite loci suitable for population genetic screening were characterized from enriched partial Ostrinia nubilalis genomic libraries. Sequence from 126 enriched small insert genomic library clones identified 25 CA/GT and 58 GA/CT loci that were unique. Perfect repeats tended to be short (n = 10–12). Ten microsatellites, PCR amplified from a Crawfordsville Iowa population showed a mean of 10 alleles per locus (range six to 20), and six of 10 loci showed heterozygote deficiency. Amplification of eight loci was observed in the sister species O. furnicalis.  相似文献   

13.
The topmouth culter (Culter alburnus) is an economically important freshwater fish in China. We obtained 159 microsatellite containing sequences (MCSs) from genomic DNA in this species enriched by (CAA)8 and (GAA) 8 probes. Careful examination of these sequences revealed the existence of cryptic repeated elements on presumed unique flanking regions. These cryptic elements can be grouped into three families, with the MCSs of the each family sharing regions of similarity ranging between 40 and 130 bp in length, with 96% sequence similarity. Repbase scans revealed that a large proportion of the cryptic repetitive DNA was identified as transposable elements (TEs). Complex patterns were apparent among these sequences. In most (89.2%), a single TE was identified in an MCS, in three instances, the same TE was observed twice in the same MCS. Some MCS have two or even four different TEs. We isolated nine polymorphic microsatellite loci from sequences with no matches to TEs. In a sample of 30 cultured C. alburnus, we found that the average allele number was 8.1 per locus (range = 4–17), with polymorphism informative content ranging from 0.364 to 0.898. These microsatellites can be used to study the population genetic diversity of this species.  相似文献   

14.
We developed microsatellites in fig (Ficus carica L.). A TC and TG‐enriched genomic library was screened, and after sequencing, primers were designed for 20 microsatellites. Eight primer pairs produced amplification products that were both interpretable and polymorphic in 14 fig cultivars and two French wild‐growing populations of F. carica (n1 = 9 and n2 = 10). Number of alleles per locus ranged from three to six. Except for one microsatellite locus, the observed heterozygosity was higher than the expected value. The F. carica microsatellites gave amplification products in 17 other Ficus species in 86% of the cases.  相似文献   

15.
Microsatellites are a major component of the human genome, and their evolution has been much studied. However, the evolution of microsatellite flanking sequences has received less attention, with reports of both high and low mutation rates and of a tendency for microsatellites to cluster. From the human genome we generated a database of many thousands of (AC)n flanking sequences within which we searched for common characteristics. Sequences flanking microsatellites of similar length show remarkable levels of convergent evolution, indicating shared mutational biases. These biases extend 25–50 bases either side of the microsatellite and may therefore affect more than 30% of the entire genome. To explore the extent and absolute strength of these effects, we quantified the observed convergence. We also compared homologous human and chimpanzee loci to look for evidence of changes in mutation rate around microsatellites. Most models of DNA sequence evolution assume that mutations are independent and occur randomly. Allowances may be made for sites mutating at different rates and for general mutation biases such as the faster rate of transitions over transversions. Our analysis suggests that these models may be inadequate, in that proximity to even very short microsatellites may alter the rate and distribution of mutations that occur. The elevated local mutation rate combined with sequence convergence, both of which we find evidence for, also provide a possible resolution for the apparently contradictory inferences of mutation rates in microsatellite flanking sequences.  相似文献   

16.
The unusual eukaryotic Helitron transposons can readily capture host sequences and are, thus, evolutionarily important. They are presumed to amplify by rolling‐circle replication (RCR) because some elements encode predicted proteins homologous to RCR prokaryotic transposases. In support of this replication mechanism, it was recently shown that transposition of a bat Helitron generates covalently closed circular intermediates. Another strong prediction is that RCR should generate tandem Helitron concatemers, yet almost all Helitrons identified to date occur as solo elements in the genome. To investigate alternative modes of Helitron organization in present‐day genomes, we have applied the novel computational tool HelitronScanner to 27 plant genomes and have uncovered numerous tandem arrays of partially decayed, truncated Helitrons in all of them. Strikingly, most of these Helitron tandem arrays are interspersed with other repeats in centromeres. Many of these arrays have multiple Helitron 5′ ends, but a single 3′ end. The number of repeats in any one array can range from a handful to several hundreds. We propose here an RCR model that conforms to the present Helitron landscape of plant genomes. Our study provides strong evidence that plant Helitrons amplify by RCR and that the tandemly arrayed replication products accumulate mostly in centromeres.  相似文献   

17.
The sandfly Lutzomyia longipalpis, an important vector of visceral leishmaniasis in the New World, is believed to be a species complex. In an effort to better understand population dynamics and speciation in this vector we developed a panel of dinucleotide — (CA)n— microsatellite loci using an enrichment technique. Eleven polymorphic loci that produced consistent allelic banding patterns were characterized using a laboratory population of L. longipalpis. These dinucleotide microsatellite loci were more polymorphic than trinucleotide microsatellites characterized in wild‐caught samples of two other sandfly species; the variability of these loci was unexpected because the laboratory flies were believed to be inbred.  相似文献   

18.
Reliable population DNA molecular markers are difficult to develop for molluscs, the reasons for which are largely unknown. Identical protocols for microsatellite marker development were implemented in three gastropods. Success rates were lower for Gibbula cineraria compared to Littorina littorea and L. saxatilis. Comparative genomic analysis of 47.2 kb of microsatellite containing sequences (MCS) revealed a high incidence of cryptic repetitive DNA in their flanking regions. The majority of these were novel, and could be grouped into DNA families based upon sequence similarities. Significant inter-specific variation in abundance of cryptic repetitive DNA and DNA families was observed. Repbase scans show that a large proportion of cryptic repetitive DNA was identified as transposable elements (TEs). We argue that a large number of TEs and their transpositional activity may be linked to differential rates of DNA multiplication and recombination. This is likely to be an important factor explaining inter-specific variation in genome stability and hence microsatellite marker development success rates. Gastropods also differed significantly in the type of TEs classes (autonomous vs non-autonomous) observed. We propose that dissimilar transpositional mechanisms differentiate the TE classes in terms of their propensity for transposition, fixation and/or silencing. Consequently, the phylogenetic conservation of non-autonomous TEs, such as CvA, suggests that dispersal of these elements may have behaved as microsatellite-inducing elements. Results seem to indicate that, compared to autonomous, non-autonomous TEs maybe have a more active role in genome rearrangement processes. The implications of the findings for genomic rearrangement, stability and marker development are discussed.  相似文献   

19.
The RNU2 locus encoding human U2 small nuclear RNA (snRNA) is organized as a nearly perfect tandem array containing 5 to 22 copies of a 5.8-kb repeat unit. Just downstream of the U2 snRNA gene in each 5.8-kb repeat unit lies a large (CT)n · (GA)n dinucleotide repeat (n ≈ 70). This form of genomic organization, in which one repeat is embedded within another, provides an unusual opportunity to study the balance of forces maintaining the homogeneity of both kinds of repeats. Using a combination of field inversion gel electrophoresis and polymerase chain reaction, we have been able to study the CT microsatellites within individual U2 tandem arrays. We find that the CT microsatellites within an RNU2 allele exhibit significant length polymorphism, despite the remarkable homogeneity of the surrounding U2 repeat units. Length polymorphism is due primarily to loss or gain of CT dinucleotide repeats, but other types of deletions, insertions, and substitutions are also frequent. Polymorphism is greatly reduced in regions where pure (CT)n tracts are interrupted by occasional G residues, suggesting that irregularities stabilize both the length and the sequence of the dinucleotide repeat. We further show that the RNU2 loci of other catarrhine primates (gorilla, chimpanzee, orangutan, and baboon) contain orthologous CT microsatellites; these also exhibit length polymorphism, but are highly divergent from each other. Thus, although the CT microsatellite is evolving far more rapidly than the rest of the U2 repeat unit, it has persisted through multiple speciation events spanning >35 Myr. The persistence of the CT microsatellite, despite polymorphism and rapid evolution, suggests that it might play a functional role in concerted evolution of the RNU2 loci, perhaps as an initiation site for recombination and/or gene conversion.  相似文献   

20.

Background  

Gene-based (genic) microsatellites are a useful tool for plant genetics and simple sequence repeat loci can often be found in coding regions of the genome. While EST sequencing can be used to discover genic microsatellites, direct screening of cDNA libraries for repeat motifs can save on overall sequencing costs. The objective of this research was to screen a large cDNA library from and Andean common bean genotype for six di-nucleotide and tri-nucleotide repeat motifs through a filter hybridization approach and to develop microsatellite markers from positive clones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号