首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the notostigmophoran centipedes, two pairs of vesicular glands have evolved. These paired glands are situated in the first and second trunk segment and open via cuticular ducts in the upper part of the particular pleura. The vesicular glands of Scutigera coleoptrata were investigated using light and, for the first time, electron microscopical methods. The glands consist of wide sac‐like cavities that often appear vesicular. The epithelia of both glands are identically structured and consist of numerous glandular units. Each of these units consists of four different cells: a single secretory cell, a small intermediary cell, and one proximal and one distal canal cell. The intermediary cell forms a conducting canal and connects the secretory cell with the canal cells. Proximally, the intermediary cell bears microvilli, whereas the distal part is covered with a distinct cuticle. The cuticle is a continuation of the cuticle of the canal cells. This investigation shows that the ultrastructure of glandular units of the vesicular glands is comparable to that of the glandular units of other epidermal glands in Chilopoda and Diplopoda, although the glands look completely different in the light microscope. Thus, it is likely that the vesicular glands and epidermal glands share the same ground pattern. With regard to specific differences in the cuticular lining of the intermediary cells, a common origin of epidermal glands in Myriapoda and Hexapoda is not supported. J. Morphol. 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
The maxilla I-gland of Scutigera coleoptrata was investigated using light and electron microscopy methods. This is the first ultrastructural investigation of a salivary gland in Chilopoda. The paired gland opens via the hypopharynx into the foregut and extends up to the third trunk segment. The gland is of irregular shape and consists of numerous acini consisting of several gland units. The secretion is released into an arborescent duct system. Each acinus consists of multiple of glandular units. The units are composed of three cell types: secretory cells, a single intermediary cell, and canal cells. The pear-shaped secretory cell is invaginated distally, forming an extracellular reservoir lined with microvilli, into which the secretion is released. The intermediary cell forms a conducting canal and connects the secretory cell with the canal cell. Proximally, the intermediary cell bears microvilli, whereas the distal part is covered with a distinct cuticle. The cuticle is a continuation of the cuticle of the canal cells. This investigation shows that the structure of the glandular units of the salivary maxilla I-gland is comparable to that of the glandular units of epidermal glands. Thus, it is likely that in Chilopoda salivary glands and epidermal glands share the same ground pattern. It is likely that in compound acinar glands a multiplication of secretory and duct cells has taken place, whereas the number of intermediary cells remains constant. The increase in the number of salivary acini leads to a shifting of the secretory elements away from the epidermis, deep into the head. Comparative investigations of the different head glands provide important characters for the reconstruction of myriapod phylogeny and the relationships of Myriapoda and Hexapoda.  相似文献   

3.
Early development of the secretory cavity of chemically fixed peltate glands in Humulus lupulus L. showed secretions with different densities, light, gray and dark, in the cytoplasm of disc cells and in the periplasmic space adjacent to the developing secretory cavity. Secretions were detected in the disc cell wall and subsequently in the developing secretory cavity under the subcuticular wall of the sheath. Light and gray secretions in the cavity possessed a membrane-like surface feature. Secretions were in contact with the irregular inner surface of the cuticle. Secretions contributed to the thickening of the cuticle, whereas the membrane-like surface feature contributed to a network of Cannabis striae distributed throughout the cuticle. This study supports an early development and organization of the secretory cavity in H. lupulus, parallel to those in Cannabis, and may represent common features for lipophilic glands in angiosperms.  相似文献   

4.
The dermal sheath of glandular trichomes of Cannabis sativa L., consisting of cuticle and a subcuticular wall, was examined by transmission electron microscopy. Cuticle thickened selectively on the outer wall of disc cells of each trichome prior to formation of the secretory cavity, whereas thickening was less evident on the dermal cells of the bract. Membraned secretory vesicles that differ in size and appearance in the secretory cavity were the source of precursors for synthesis of cuticle. Vesicle contents, released following the degradation of the vesicle membrane upon contact with the subcuticular wall, contributed to both structured and amorphous phases of cuticle development. The structured phase was represented by deposition and thickening of cuticle at the subcuticular wall-cuticle interface to form a thickened cuticle. In the amorphous phase precursors permeated the cuticle in a liquid state, as shown by fusion of cuticles and wax layers between contiguous glands, and may have contributed to growth in surface area of the expanding sheath. Disc cells are interpreted to control growth of secretory cavity by secretion of membraned vesicles into the cavity. The thickened cuticle, which increased eightfold in thickness during enlargement of the gland, provided structural strength for the extensive surface area of the dermal sheath. The gland of Cannabis in which vesicle contents contribute to the growth in thickness and surface area of the cuticle of the sheath is interpreted to represent a phylogenetically derived state as contrasted to secretory glands possessing only cuticle and lacking a complement of secretory vesicles.  相似文献   

5.
Abstract The ‘slit organs’ of Anoplodactylus petiolatus are found all over the body cuticle. They are composed of a cuticular pore apparatus, an inner and an outer canal cell, and of four large and one to three small compartment cells. Plasma of the latter seven cells is almost completely filled with large membrane-enclosed compartments that contain either numerous small vesicles (one of the large cells) or homogeneous material of varying electron density (three large and all the small cells). Microvilli are found in the apical region of the compartment cells. The nucleus is situated basally where Golgi-cisternae, coated vesicles and free ribosomes are frequently found. Apical microvilli and vesicles are also formed by the inner canal cell indicating that it might directly be involved in transport. Anatomically the ‘slit organs’ are similar to class III glands described for many arthropods. In addition, discharge of secretion via large intracellular compartments is also a feature found in arthropod glands. Although pycnogonids appear to take up substances across the cuticle, a genuine secretion rather than a more generalized transport function is suggested for the ‘slit organs’.  相似文献   

6.
Pholcus phalangioidesdoes not possess receptacular seminis. The uterus externus (genital cavity) itself functions as a sperm storage structure. Two accessory glands are situated in the dorsal part of the uterus externus; they discharge their secretory product into the genital cavity. The secretion is considered to serve primarily as a matrix for sperm storage, i.e. to keep the spermatozoa in a fixed position. The accessory glands consist of numerous glandular units, each being composed of four cells: two secretory cells are always joined and surrounded twice by an inner and an outer envelope cell. Both envelope cells take part in forming a cuticular ductule that leads from the secretory cells to the pore plates of the uterus externus. The inner envelope cell produces the proximal part of the canal close to the microvilli of the secretory cells, whereas the outer envelope cell produces the distal part of the canal leading to the pore plate. Close to the pore the latter exhibits prominent microvilli that might indicate additional secretory activity.  相似文献   

7.
The epidermal salt glands of the grasses Cynodon and Distichlis consist of a small outer cap cell and a large, flask-shaped basal cell. The wall of the basal cell is contiguous with those of the adjacent epidermal cells and underlying mesophyll cells. The basal cell is connected symplastically with all adjoining cells via plasmodesmata. The outer, protruding portion of the glands is covered by a cuticle continuous with that of the adjoining epidermal cells. However, the lateral cell walls of the glands are not incrusted by this cuticle. The cap cell wall has a loose, mottled appearance quite different from the compact striated appearance of the basal cell wall. The cap cell is characterized by dense cytoplasm containing many organelles and a varying number of small vacuoles. The basal cell cytoplasm is distinguished by the presence of an intricate system of paired membranes that are closely associated with mitochondria and microtubules. These membranes are infoldings of the plasmalemma that originate adjacent to the wall separating the cap and basal cells. The space enclosed by the paired membranes, therefore, is an extracellular channel that is open only in the direction of secretory flow. The consistent orientation of this system of paired membranes suggests that it represents a structural specialization which is directly and functionally involved in the secretory process. The close association of mitochondria and microtubules with the paired membranes implies that these structures are also functionally related to the secretory process. Finally, the results of this study indicate that these glands are ultrastructurally similar to those of Spartina and that the glands of these three grasses are structurally distinct from those of dicotyledonous plants.  相似文献   

8.
9.
Pheromone glands were discovered in the prothorax of male Hylotrupes bajulus (L.) (Coleoptera : Cerambycidae). These exocrine glands were investigated by SEM and light microscopy. Almost the entire prothorax is internally lined with a glandular matrix composed of numerous heap-like complex glands. Each gland is divided into several subunits (“pore field units”), which in turn are composed of a varying number of glandular units. The glandular unit comprises a distal voluminous glandular cell, a medial (intercalary) canal cell I, and a minute canal cell II near the cuticle. The spindle-like, basally constricted receiving canal of the gland cell leads into the long, non-porous conducting canal, which, by a single cuticle canal, opens in an external pore field, an aggregate of orifices of other such cuticle canals. In varying numbers, these randomly arranged pore fields are located in superficial pits that are distributed over nearly the entire prothorax. The structure of these male sex pheromone glands is discussed in comparison with other known glands in species of Coleoptera characterized by multicellular aggregations and by pore plates.  相似文献   

10.
In female alates of Macrotermes annandalei, two types of abdominal glands are involved in the secretion of sex pheromone. Tergal glands are found at the anterior margin of tergites 6-10 and posterior sternal glands (PSGs) are located at the anterior margin of sternites 6-7. The cytological features of both types of glands are quite similar. The fine structural organization of PSGs is studied more precisely and described for the first time. The glandular cuticle is pitted with narrow apertures corresponding to the openings of numerous subcuticular pouches. Several Class 3 glandular units open in each pouch. One canal cell and one secretory cell make an individual glandular unit. The canal cell is enlarged apically and is connected with the other canal cells to form a common pouch. Based on the structural features found in these glands, we propose a common secretory process for PSGs and tergal glands. During the physiological maturation of alates inside the nest, secretory vesicles amass in the cytoplasm of secretory cells, while large intercellular spaces collapse the cuticular pouches. At the time of dispersal flight, pouches are filled with the content of secretory vesicles while intercellular spaces are sharply reduced. After calling behavior, no secretion remains in the glands and pouches collapse again, while secretory cells are drastically reduced in size. The structure and the secretory processes of PSGs and tergal glands are compared to those of abdominal sexual glands known in termites.  相似文献   

11.
Social insects have numerous exocrine glands, but these organs are understudied in termites compared to hymenopterans. The tarsomere and distal tibial glands of the termites Heterotermes tenuis, Coptotermes gestroi and Silvestritermes euamignathus were investigated by scanning and transmission electron microscopy. Pore plates are visible in scanning micrographs on the distal tibial surfaces and on the ventral surface of the first and second tarsomeres of workers of H. tenuis and C. gestroi. In contrast, workers of S. euamignathus have isolated pores spread throughout the ventral surfaces of the first, second, and third tarsomeres and the distal tibia. In all three species each pore corresponds to the opening of a class-3 secretory unit, composed of one secretory and one canal cell. Clusters of class-3 glandular cells are arranged side by side underneath the cuticle. The main characteristics of these exocrine glands include their presence on all the legs and the electron-lucent secretion in the secretory cells. Possible functions of these glands are discussed.  相似文献   

12.
Leam Sreng 《Zoomorphology》1985,105(3):133-142
Summary The abdominal glands described here play a decisive role in the typical sexual behavior of Nauphoeta cinerea. Unlike other cockroaches, the males of this species produce two successive chemical signals: the sex pheromone itself, produced by the sternal glands, attracts the female from a distance, and the aphrodisiacs, secreted by the tergal glands, are licked by the female who is thus in a favorable position for mating. The well developed glandular apparatus is composed of 5 sternal glands (St3 to St7) and 7 tergal glands (T2 to T8). These glands appear as a thickening of the epithelium without significant modification of the external cuticle. The glandular epithelium is made up of several kinds of cells: ordinary epidermal cells (which only exist in the sternal glands), cells with microtubules, type 2 cells (oenocytes), and especially type 3 glandular units (composed of a secretory cell and a canal cell). The products secreted by the sternal glands are chiefly volatile products and fatty acids and those secreted by the tergal glands are primarily fatty acids and proteins. In this work, the relationship between the cytology of the glandular cells and the nature of the secreted products is discussed.  相似文献   

13.
The fine structure of the interommatidial exocrine glands, found in the compound eyes of the water strider Aquarius remigis, is described using light, scanning, and transmission electron microscopy. The glandular pores of the glands are specialized into minute “nail-headed” structures (NS), which are described for the first time in arthropod compound eyes. Each NS is composed of two components: a rod-like stalk and a cup-like depression. The TEM study shows that the glands are class 3 epidermal glands as defined by Noirot and Quennedey (1974, 1991). Each gland consists of 3 cells: a gland cell, an intermediary cell, and a duct (canal) cell. The gland cell contains abundant electron-lucent vesicles, while the intermediary cell contains a large number of osmiophilic secretory granules. These two cells might secrete different substances which mix together in the dilated sac-like portion of the conducting canal before final release. The possible functions of the secretions released from these glands are discussed.  相似文献   

14.
15.
A scanning-electron microscopic (SEM) study of a clutch of eggs and juveniles of Dickdellia labioflecta on Colossendeis megalonyx megalonyx revealed that the young snails remove the upper layers of the pycnogonid cuticle, most probably by rasping. This way holes are created in the cuticle that could serve as a potential source of food for the snail. Measurements and statistics show that the holes have the same density as the cuticular glands. These glands are spread all over the pycnogonid cuticle. Additionally, they are filled with cytoplasmic material having a fine structure and cuticular surrounding that is typical for those glands. Hence, it is suggested that the snails get access to the interior of the pycnogonid through the holes and glands. Holes in the cuticle are absent under smaller Dickdellia specimens, but they are formed consecutively as they become older and grow larger. It is suggested that Dickdellia snails are ectoparasites because this would allow them to remain on pycnogonids until they exceed the initial egg volume, which would be difficult to explain without additional food uptake from the pycnogonid host.  相似文献   

16.
Silk spinning is widely-spread in trombidiform mites, yet scarse information is available on the morphology of their silk glands. Thus this study describes the fine structure of the prosomal silk glands in a small parasitic mite, Ornithocheyletia sp. (Cheyletidae). These are paired acinous glands incorporated into the podocephalic system, as typical of the order. Combined secretion of the coxal and silk glands is released at the tip of the gnathosoma. Data obtained show Ornithocheyletia silk gland belonging to the class 3 arthropod exocrine gland. Each gland is composed of seven pyramidal secretory cells and one ring-folded intercalary cell, rich in microtubules. The fine structure of the secretory cells points to intensive protein synthesis resulted in the presence of abundant uniform secretory granules. Fibrous content of the granules is always subdivided into several zones of two electron densities. The granules periodically discharge into the acinar cavity by means of exocytosis. The intercalary cell extends from the base of the excretory duct and contributes the wall of the acinar cavity encircling the apical margins of the secretory cells. The distal apical surface of the intercalary cell is covered with a thin cuticle resembling that of the corresponding cells in some acarine and myriapod glands. Axon endings form regular synaptic structures on the body of the intercalary cell implying nerve regulation of the gland activity.  相似文献   

17.
Of mussels taken from the Ebro Delta River (E. Spain), 3% have a nonmodified copepod, Modiolicola gracilis, in the gill tissues. The cuticle of different segments of the body has an epicuticle with two layers, which show external microvilli-like projections. Weakly positive reactivity to the PTA technique has been detected in the external region. The procuticle has the helicoidal architecture of the chitinous tegument in arthropods, whereas the cuticle shows discontinuities in the regions of ducts in tegumental glands. The integument is comprised of three types of cells. Epidermal cells are flat with numerous mitochondria. Muscle cells show well-developed mitochondria with several longitudinally distributed cristae. A third and secretory cell shows a well-developed rough endoplasmic reticulum and Golgi complex in the basal zone. Its apical portion is full of secretory granules. Through the cuticle, these integumental glands open directly to the cuticular surface via a short duct coated by epicuticle. The composition and specializations of this complex cuticular architecture differ markedly from those shown by an endoparasitic copepod detected in the digestive gland of the mussel. It does not appear that the specializations detected in the cuticle of M. gracilis lead to any histopathological alteration in host tissues. © 1994 Wiley-Liss, Inc.  相似文献   

18.
Summary The spiral organs of Nereis have been shown to be compound glands and not photoreceptors. The ducts of two or three types of secretory cells attach themselves in a serial manner to a spirally wound axial columella which lies just below the cuticle. The large intra-cellular ducts terminate in a number of fine ducts which penetrate the columella and open through it into the lumen of the gland. This communicates to the outside through a pore in the cuticle. The secretions are muco-polysaccharides which are probably mixed in the lumen before discharge.We should like to acknowledge the support of this work by the Science Research Council.  相似文献   

19.
【目的】蟋螽是直翅目中唯一具有吐丝筑巢行为的类群。本研究旨在探讨蟋螽丝腺的结构特点。【方法】应用解剖学观察、免疫荧光、苏木精-伊红染色、PAS苏木精染色、扫描电镜和透射电镜等方法从细胞水平对黑缘烟蟋螽Capnogryllacris nigromarginata丝腺的显微与超微结构进行了观察。【结果】黑缘烟蟋螽丝腺由导管和腺泡构成。腺泡由鞘细胞延伸形成的结缔组织鞘包围。腺泡的主体有4种细胞,分别为Ⅰ型分泌细胞、Ⅱ型分泌细胞、围细胞和腔细胞。Ⅰ型和Ⅱ型分泌细胞为大的腺细胞,形状不规则。分泌细胞细胞核很大,胞质内有大量的内质网和分泌颗粒。Ⅰ型分泌细胞靠近腺泡中心,PAS-苏木精染色表明Ⅰ型分泌细胞内含糖蛋白,Ⅱ型分泌细胞在腺泡外周,位于Ⅰ型分泌细胞与围细胞或结缔组织鞘之间。腔细胞分散在分泌细胞之间,包围形成胞外运输分泌物的通道。围细胞与鞘细胞接触,具有由细胞膜内陷形成的微绒毛腔,胞质内有大量的线粒体。围细胞微绒毛腔与腔细胞包围的细胞外运输通道相连,分泌细胞分泌的颗粒聚集在分泌细胞和胞外运输通道之间的连接处,并将分泌物排出至胞外运输通道。多个腺泡的胞外运输通道汇集到由单层细胞组成的丝腺导管。单层导管细胞靠近管腔外围具有规则排列的质膜内陷和大量伸长的线粒体;靠近管腔的一侧具连续的细胞膜突起,在导管壁的表皮下紧密排列。【结论】黑缘烟蟋螽丝腺分泌细胞分为Ⅰ型分泌细胞和Ⅱ型分泌细胞。分泌物质产生及分泌过程依次经过分泌细胞、腔细胞包围的胞外通道、分支导管、总导管和唾窦。其中在腺泡细胞之间,分泌物向外运输过程中,围细胞微绒毛腔的微丝束可能对分泌物的外排提供推动力。  相似文献   

20.
Exocrine dermal glands, comparable to the class 3 glandular units of insects, are found in the gills of the grass shrimp, Palaemonetes pugio. The dermal glands are composed of three cells: secretory cell, hillock cell and canal cell. Originating as a complex invagination of the apical cytoplasm of the granular secretory cell, a duct ascends through the hillock and canal cells to the cuticular surface. The duct is divisible into four regions: the secretory apparatus in the granular secretory cell, the locular complex, the hillock region within the hillock cell and the canal within the canal cell. A tubular ductule is contained within the latter two regions. As the ductule ascends to the cuticular surface, its constitution gradually changes from one of a fibrous material to one which possesses layers of epicuticle. During the proecdysial period, the ductule is extruded into the ecdysial space and this is followed by the secretion of a new ductule. Temporary ciliary structures, located near the secretory apparatus of the secretory cell, are associated with the extrusion and reformation of the ductule. Characterized only by a basal body and rootlets throughout most of the intermolt cycle, the ciliary organelles give rise to temporary axonemic processes which ascend through the ductule toward the ecdysial space at the onset of proecdysis. Subsequently, the old ductule is sloughed off and a new ductule is reformed around the ciliary axonemes. Following this reformation, the ciliary axonemes degenerate. The function of cytoplasmic processes, derived from the apical cytoplasm of the secretory cell, is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号