首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Mutagenicity of amino acid and glutathione S-conjugates in the Ames test   总被引:1,自引:0,他引:1  
The mutagenicity of the glutathione S-conjugate S-(1,2-dichlorovinyl)glutathione (DCVG), the cysteine conjugates S-(1,2-dichlorovinyl)-L-cysteine (DCVC) and S-(1,2-dichlorovinyl)-DL-alpha-methylcysteine (DCVMC), and the homocysteine conjugates S-(1,2-dichlorovinyl)-L-homocysteine (DCVHC) and S-(1,2-dichlorovinyl)-DL-alpha-methylhomocysteine (DCVMHC) was investigated in Salmonella typhimurium strain TA2638 with the preincubation assay. DCVC was a strong, direct-acting mutagen; the cysteine conjugate beta-lyase inhibitor aminooxyacetic acid decreased significantly the number of revertants induced by DCVC; rat renal mitochondria (11,000 X g pellet) and cytosol (105,000 X g supernatant) with high beta-lyase activity increased DCVC mutagenicity at high DCVC concentrations. DCVG was also mutagenic without the addition of mammalian activating enzymes; the presence of low gamma-glutamyltransferase activity in bacteria, the reduction of DCVG mutagenicity by aminooxyacetic acid, and the potentiation of DCVG mutagenicity by rat kidney mitochondria and microsomes (105,000 X g pellet) with high gamma-glutamyltransferase activity indicate that gamma-glutamyltransferase and beta-lyase participate in the metabolism of DCVG to mutagenic intermediates. The homocysteine conjugate DCVHC was only weakly mutagenic in the presence of rat renal cytosol, which exhibits considerable gamma-lyase activity, this mutagenic effect was also inhibited by aminooxyacetic acid. The conjugates DCVMC and DCVMHC, which are not metabolized to reactive intermediates, were not mutagenic at concentrations up to 1 mumole/plate. The results demonstrate that gamma-glutamyltransferase and beta-lyase are the key enzymes in the biotransformation of cysteine and glutathione conjugates to reactive intermediates that interact with DNA and thereby cause mutagenicity.  相似文献   

2.
S-(1,2-Dichlorovinyl)glutathione (DCVG) and S-(1,2-dichlorovinyl)-L-cysteine (DCVC) produced time- and concentration-dependent cell death in isolated rat kidney proximal tubular cells. AT-125 blocked and glycylglycine potentiated DCVG toxicity, indicating that metabolism by gamma-glutamyltransferase is required. S-(1,2-Dichlorovinyl)-L-cysteinylglycine, a putative metabolite of DCVG, also produced cell death, which was prevented by 1,10-phenanthroline, phenylalanylglycine, and aminooxyacetic acid, inhibitors of aminopeptidase M, cysteinylglycine dipeptidase, and cysteine conjugate beta-lyase, respectively. Aminooxyacetic acid and probenecid protected against DCVC toxicity, indicating a role for metabolism by cysteine conjugate beta-lyase and organic anion transport, respectively. DCVC produced a small decrease in cellular glutathione concentrations and did not change cellular glutathione disulfide concentrations or initiate lipid peroxidation. DCVC caused a large decrease in cellular glutamate and ATP concentrations with a parallel decrease in the total adenine nucleotide pool; these changes were partially prevented by aminooxyacetic acid. Both DCVG and DCVC inhibited succinate-dependent oxygen consumption, but DCVC had no effect when glutamate + malate or ascorbate + N,N,N',N'-tetramethyl-p-phenylenediamine were the electron donors. DCVC inhibited mitochondrial, but not microsomal, Ca2+ sequestration. These alterations in mitochondrial function were partially prevented by inhibition of DCVG and DCVC metabolism and were strongly correlated with decreases in cell viability, indicating that mitochondria may be the primary targets of nephrotoxic cysteine S-conjugates.  相似文献   

3.
A cell line derived from pig kidney, LLC-PK1, was grown in a culture system in which the cells express morphological and biochemical characteristics of the proximal tubule. This model was used to investigate the mechanism of S-cysteine conjugate toxicity and the role of glutathione conjugate metabolism. LLC-PK1 cells have the degradative enzymes of the mercapturate pathway, and S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)-L-glutathione are toxic. S-(1,2-Dichlorovinyl)-L-glutathione is not toxic when the cells are pretreated with AT-125, an inhibitor of gamma-glutamyl transpeptidase. The cells respond to a variety of toxic cysteine conjugates. Cysteine conjugate beta-lyase activity is not detectable by standard assays, but can be measured using radiolabeled S-(1,2-dichlorovinyl)-L-cysteine. Pyruvate stimulates the beta-elimination reaction with S-(1,2-dichlorovinyl)-L-cysteine as substrate 2-3-fold. The data suggest that a side transamination reaction regulates the flux of substrate through the beta-elimination pathway; therefore, cysteine conjugate beta-lyase in LLC-PK1 cells may be regulated by transamination, and measurement of lyase activity in some systems may require the presence of alpha-ketoacids. Aminoxyacetic acid blocks both the metabolism of S-(1,2-dichlorovinyl)-L-cysteine to a reactive species which covalently binds to cellular macromolecules and toxicity. Glutathione inhibits the binding of the sulfur containing cleavage fragment to acid insoluble material in vitro. The data provide direct evidence that S-(1,2-dichlorovinyl)-L-cysteine is metabolized to a reactive species which covalently binds to cellular macromolecules, and the binding is proportional to toxicity.  相似文献   

4.
The nephrotoxicity of chlorotrifluoroethylene (CTFE) was examined using isolated rabbit renal tubules suspensions. Exposure of the tubules to CTFE resulted in consumption of CTFE, formation of a glutathione conjugate and inhibition of active organic acid transport. Synthetic cysteine, N-acetylcysteine or glutathione conjugates of CTFE inhibited transport indicating S-conjugation as a possible toxic pathway. 1,2-dichlorovinyl glutathione (DCVG), a model synthetic glutathione conjugate, was used to examine the degradation and toxicity of these conjugates. DCVG inhibited rabbit renal tubule transport in vivo and in vitro. The DCVG was found to be degraded with the evolution of glutamine and glycine to produce the ultimate nephrotoxicant, dichlorovinyl cysteine. Dichlorovinyl cysteine is then bioactivated with the release of ammonia. This sequential degradation explains the latency of DCVG-induced renal transport inhibition relative to dichlorovinyl cysteine. It is now evident that certain halogenated ethylenes are capable of being biotransformed to glutathione conjugates in the kidney with their subsequent hydrolysis to nephrotoxic cysteine conjugates.  相似文献   

5.
An activity stain to detect glutamine transaminase K subjected to nondenaturing polyacrylamide gel electrophoresis (ND-PAGE) was developed. The gel is incubated with a reaction mixture containing L-phenyl-alanine, alpha-keto-gamma-methiolbutyrate (alpha KMB), glutamate dehydrogenase, phenazine methosulfate (PMS) and nitroblue tetrazolium (NBT). Glutamine transaminase K catalyzes a transamination reaction between phenylalanine and alpha KMB. The resultant methionine is a substrate of glutamate dehydrogenase. The NADH formed in the oxidative deamination of methionine reacts with PMS and NBT to form a blue band on the surface of the gel coincident with glutamine transaminase K activity. Cysteine S-conjugate beta-lyase activity is detected in the gel by incubating the gel with a reaction mixture containing alpha KMB (to ensure maintenance of the enzyme in the pyridoxal 5'-phosphate form), S-(1,2-dichlorovinyl)-L-cysteine (DCVC), PMS, and NBT. The products of the lyase reaction interact with PMS and NBT to form a blue dye coincident with the lyase activity. In addition, a new assay procedure for measuring cysteine S-conjugate beta-lyase activity was devised. This procedure couples pyruvate formation from DCVC to the alanine dehydrogenase reaction. Preparations of purified rat kidney glutamine transaminase K yield a single protein band on ND-PAGE (apparent Mr approximately 95,000). This band coincides with both the cysteine S-conjugate beta-lyase and glutamine transaminase K activities. Activity staining showed that homogenates of rat kidney, liver, skeletal muscle, and heart possess a glutamine transaminase K/cysteine S-conjugate beta-lyase activity with an Rf value on ND-PAGE identical to that of purified rat kidney glutamine transaminase K.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Incubation of isolated, rat kidney cells with S-(1,2-dichlorovinyl)-L-homocysteine (DCVHC) caused time-dependent cell death. Cytotoxicity of DCVHC was potentiated by addition of alpha-ketobutyrate, indicating the involvement of pyridoxal phosphate-dependent enzymes. A second addition of DCVHC to cells produced increased cytotoxicity, indicating that the bioactivating ability is not lost after exposure to the conjugate. DCVHC decreased cellular glutathione concentrations by 52% and substantially inhibited glutathione biosynthesis from precursors. In contrast, the cysteine analog S-(1,2-dichlorovinyl)-L-cysteine (DCVC) failed to decrease cellular glutathione concentrations and only partially inhibited glutathione biosynthesis. As with DCVC, DCVHC did not increase cellular glutathione disulfide concentrations and did not initiate lipid peroxidation, indicating that it does not produce an oxidative stress. DCVHC and DCVC produced similar alterations in mitochondrial function: Cellular ATP concentrations were decreased by 57% and cellular ADP and AMP concentrations were increased twofold, thereby decreasing the ATP/ADP ratio from 2.8 to 0.6 and the cellular energy charge from 0.80 to 0.56; DCVHC was a potent inhibitor of succinate-dependent oxygen consumption, but had little effect on respiration linked to oxidation of glutamate + malate or ascorbate + N,N,N'N'-tetramethyl-p-phenylenediamine. DCVHC was a potent inhibitor of mitochondrial Ca2+ sequestration and, in contrast to DCVC, also inhibited microsomal Ca2+ sequestration. These DCVHC-induced alterations in cellular metabolism were prevented by addition of propargylglycine or aminooxyacetic acid, and the alpha-methyl analog S-(1,2-dichlorovinyl)-DL-alpha-methylhomocysteine was not toxic. These results support a role for pyridoxal phosphate-dependent bioactivation of DCVHC and indicate that the greater nephrotoxic potency of DCVHC as compared to DCVC is partially due to the presence of both mitochondrial and extramitochondrial targets for DCVHC.  相似文献   

7.
Adult male rats with cannulated or ligated bile ducts were given S-(2-hydroxyoestradiol-1-yl)[(35)S]glutathione, S-(2-hydroxy[6,7-(3)H(2)]oestradiol-1-yl)glutathione or S-(2-hydroxyoestradiol-1-yl)[glycine-(3)H]glutathione by intraperitoneal injection. The recovery of radioactivity in the bile of bile duct-cannulated rats was 33-86% and in the urine of bile duct-ligated rats was 54-105%. Oestrogen thioether derivatives of glutathione, cysteinylglycine, cysteine and N-acetylcysteine were isolated from bile; only the N-acetylcysteine derivatives could be identified in the urine. The steroid moiety was characterized by microchemical tests before and after treatment with Raney nickel: 2-hydroxyoestradiol-17beta was released from the glutathione conjugate, and 2-hydroxyoestrone and 2-hydroxyoestrone 3-methyl ether from the other conjugates. From intact rats the recovery of administered radioactivity was about 15% in the urine and 5% in the faeces over a period of several days and the radioactivity appeared to be largely protein-bound. The results demonstrate that injected oestrogen-glutathione conjugate undergoes conversion into N-acetylcysteine derivatives in vivo. Oestrogen-glutathione conjugates formed in the intact rat may be excreted in an apparently non-steroidal, possibly protein-bound form, which would not be detected by current analytical techniques.  相似文献   

8.
Kidney cortex cysteine conjugate beta-lyase enzymes were characterized using S-(2-benzothiazolyl)-L-cysteine and S-(1,2-dichlorovinyl)-L-cysteine as substrates. The contribution of the hepatic form of cysteine conjugate beta-lyase to renal metabolism of these S-cysteine conjugates is not substantial. No cysteine conjugate beta-lyase activity was found in kidney cortex brush border membrane vesicles. Two cysteine conjugate beta-lyase activities with densities corresponding to the mitochondrial and soluble fractions were separated on Percoll gradients.  相似文献   

9.
S-(N-methylcarbamoyl)glutathione, a chemically-reactive glutathione conjugate, has been isolated from the bile of rats administered methyl isocyanate and characterized, as its N-benzyloxycarbonyl dimethylester derivative, by tandem mass spectrometry. The ability of this glutathione adduct to donate an N-methylcarbamoyl moiety to the free -SH group of cysteine was evaluated in vitro with the aid of a highly specific thermospray LC/MS assay procedure. The glutathione adduct reacted readily with cysteine in buffered aqueous media (pH 7.4, 37 degrees C) and after 2 hr, 42.5% of the substrate existed in the form of S-(N-methylcarbamoyl)cysteine. The reverse reaction, i.e. between the cysteine adduct and free glutathione, also took place readily under these conditions. It is concluded that conjugation of methyl isocyanate with glutathione in vivo affords a reactive S-linked product which displays the potential to carbamoylate nucleophilic amino acids. The various systemic toxicities associated with exposure of animals or humans to methyl isocyanate could therefore be due to release of the isocyanate from its glutathione conjugate, which thus may serve as a vehicle for the transport of methyl isocyanate in vivo.  相似文献   

10.
There is a remarkable difference in the isozyme pattern between cardiac and hepatic glutathione S-transferases in rat (Ishikawa, T., and Sies, H. (1984) FEBS Lett. 169, 156-160), and one near-neutral isozyme (pI = 6.9) of the cardiac glutathione S-transferases was found to have a significantly high activity toward 4-hydroxynonenal. The isozyme was inhibited by the resulting glutathione S-conjugate of 4-hydroxynonenal competitively with GSH and noncompetitively with 4-hydroxynonenal. The kinetic parameters estimated for the isozyme were: kcat = 460 mol X min-1 X mol enzyme-1, Km = 50 microM for 4-hydroxynonenal, Ki = 85 microM. When the heart was perfused with 4-hydroxynonenal, a marked decrease was observed in the intracellular GSH level, accompanied by an increase of glutathione S-conjugate of 4-hydroxynonenal in the heart. The rate of the conjugation reaction was more than 30 times the rate of the spontaneous reaction, the half-life of 4-hydroxynonenal in the heart being less than 4 s. The glutathione S-conjugate of 4-hydroxynonenal was released from the heart into the perfusion medium. Saturation kinetics were observed for the release with respect to the intracellular level of the S-conjugate (Vmax = 12 nmol X min-1 X g heart-1), and there was a competition by the S-conjugate for GSSG release. The release of the glutathione S-conjugate is considered as a carrier-mediated process and to be important not only in interorgan glutathione metabolism but also in diminishing the inhibitory effect of the S-conjugate on glutathione S-transferases and glutathione reductase.  相似文献   

11.
1. Addition of 1-chloro-2,4-dinitrobenzene to isolated perfused rat liver results in the rapid formation of its glutathione-S-conjugate [S-(2,4-dinitrophenyl)glutathione], which is released into both, bile and effluent perfusate. Anisotonic perfusion did not affect total S-conjugate formation, but release of the S-conjugate into the perfusate was increased (decreased) following hypertonic (hypotonic) exposure at the expense of excretion into bile. Stimulation of S-conjugate release into the perfusate following hypertonic exposure paralleled the time course of volume-regulatory net K+ uptake. 2. Basal steady-state release of oxidized glutathione (GSSG) into bile was 1.30 +/- 0.12 nmol.g-1.min-1 (n = 18) during normotonic (305 mOsmol/l) perfusion and was 3.8 +/- 0.3 nmol.g-1.min-1 in the presence of t-butylhydroperoxide (50 mumol/l). Hypotonic exposure (225 mOsmol/1) lowered both, basal and t-butylhydroperoxide (50 mumol/l)-stimulated GSSG release into bile by 35% and 20%, respectively, whereas hypertonic exposure (385 mOsmol/l) increased. Anisotonic exposure was without effect on t-butylhydroperoxide removal by the liver. GSSG release into bile also decreased by 33% upon liver-cell swelling due to addition of glutamine plus glycine (2 mmol/l, each). 3. Hypotonic exposure led to a persistent stimulation 14CO2 production from [1-14C]glucose by about 80%, whereas 14CO2 production from [6-14C]glucose increased by only 10%. Conversely, hypertonic exposure inhibited 14CO2 production from [1-14C]glucose by about 40%, whereas 14CO2 production from [6-14C]glucose was unaffected. The effect of anisotonicity on 14CO2 production from [1-14C]glucose was also observed in presence of t-butylhydroperoxide (50 mumol/l), which increased 14CO2 production from [1-14C]glucose by about 40%. 4. t-Butylhydroperoxide (50 mumol/l) was without significant effect on volume-regulatory K+ fluxes following exposure to hypotonic (225 mOsmol/l) or hypertonic (385 mOsmol/l) perfusate. Lactate dehydrogenase release from perfused rat liver under the influence of t-butylhydroperoxide was increased by hypertonic exposure compared to hypotonic perfusions. 5. The data suggest that hypotonic cell swelling stimulates flux through the pentose-phosphate pathway and diminishes loss of GSSG under conditions of mild oxidative stress. Hypotonically swollen cells are less prone to hydroperoxide-induced lactate dehydrogenase release than hypertonically shrunken cells. Hypertonic cell shrinkage stimulates the excretion of glutathione-S-conjugates into the sinusoidal circulation at the expense of biliary secretion.  相似文献   

12.
The cytotoxicity of cysteine S-conjugates was investigated in freshly isolated rat renal proximal tubule cells. The study was designed to determine the contribution of the thiols and of the acylating intermediates formed by cysteine conjugate beta-lyase to the initiation of cytotoxicity. Cell viability was determined by trypan blue exclusion and by lactate dehydrogenase leakage. The S-conjugates S-(1,2,2-trichlorovinyl)-L-cysteine, S-(1,2,3,3,3-pentachloro-prop-1-enyl)-L-cysteine and S-(1,2,3,4,4-pentachlorobuta-1,3-dienyl)-L-cysteine, at a concentration of 0.2 mM, reduced cell viability compared to controls from 85% to less than 50% after 3 h. The alpha-chlorinated enethiols formed from these S-conjugates are transformed to acylating intermediates. The S-conjugate S-(2-chlorovinyl)-L-cysteine forms an enethiol, which cannot transform to an acylating intermediate and did not reduce cell viability at 0.2 mM; at 1 mM, it resulted in a very slight reduction of cell viability after 3 h. S-(pentachlorophenyl)-L-cysteine and S-benzyl-L-cysteine, which form stable thiols after metabolism by beta-lyase, were not cytotoxic at a concentration of 1 mM. The direct acting S-(2-chloroethyl)-L-cysteine (0.2 mM) reduced cell viability after 3 h from 85% to 90% (control) to 40%. The results obtained suggest that reactions of the initial thiol-metabolites with biological macromolecules do not contribute to the induction of cytotoxicity by cysteine S-conjugates and indicate that acylating intermediates formed by cysteine conjugate R-lyase induce cytotoxic effects by non-selective acylation of cellular macromolecules.  相似文献   

13.
Chlorotrifluoroethene, a potent nephrotoxin, is a substrate for the glutathione S-transferases present in the cytosolic and microsomal fractions of rat liver. The glutathione conjugate formed by both subcellular fractions has been identified as S-(2-chloro-1,1,2-trifluoroethyl)glutathione by 1H and 19F NMR and by secondary ion mass spectrometry. The conjugate formed by the cytosolic fraction is an equimolar mixture of two diastereomers, whereas the conjugate formed by the microsomal fraction is predominantly one diastereomer, as judged by the 19F NMR spectra. No evidence for the formation of S-(trihalovinyl)glutathione derivatives by an addition/elimination reaction was found. High-performance liquid chromatography was employed to measure the rates of glutathione conjugate formation in vitro. The rates of S-(2-chloro-1,1,2-trifluoroethyl)glutathione formation were 75-107 nmol min-1 (mg of protein)-1 and 151-200 nmol min-1 (mg of protein)-1 catalyzed by the cytosolic and microsomal fractions, respectively (measured at pH 7.4, 37 degrees C, with 5 mM glutathione). These results suggest that glutathione conjugation occurs at high rates in vivo to produce the highly nephrotoxic S-(2-chloro-1,1,2-trifluoroethyl)glutathione.  相似文献   

14.
S-(chloroethyl)-cysteine (CEC) and S-(1,2-dichlorovinyl)cysteine (DCVO) have been proposed as intermediates in the metabolic transformation of the carcinogens 1,2-dichloroethane and 1,1,2-trichloroethylene. We have tested the ability of CEC and DCVC to induce DNA repair and genotoxic effects at the chromosomal level by comparative assessment of unscheduled DNA synthesis induction and micronucleus formation in Syrian hamster embryo fibroblasts. CEC induced a potent and dose-dependent response in both assays, whereas DCVC treatment resulted in a comparatively weak induction of DNA repair and failed to raise micronucleus formation above control rates. Inhibition of cysteine conjugate \gB-lyase diminished the effect of DCVC, but had no influence on the genotoxicity of CEC either in the unscheduled DNA synthesis or micronucleus assay.Abbreviations AOAA aminooxyacetic acid - CEC S-(chloroethyl)-cysteine; \gB-lyase, cysteine conjugate -lyase - DCE 1,2-dichloroethane - DCVC S(1,2-dichlorovinyl)-cysteine - GSH glutathione - HU hydroxyurea - IBR IBR-modified Dulbecco's Eagle's reinforced medium - MN2 micronuclei/2,000 cells - 4-NQO 4-nitroquinoline-1-oxide - SHE Syrian hamster embryo fibroblasts; 3H-Thd, 3H-thymidine - TCE 1,1,2-trichloroethylene - UDS unscheduled DNA synthesis  相似文献   

15.
The cysteine S conjugate of 1,2-dichloroethane, S-(2-chloroethyl)-DL-cysteine (CEC), is hepatotoxic, nephrotoxic, and mutagenic. To determine the cellular and chemical mechanisms involved in CEC-induced toxicity and to assess the role of an episulfonium ion, the effect of CEC on the viability of isolated rat hepatocytes was studied. CEC addition resulted in both a time- and concentration-dependent loss of cell viability. Depletion of intracellular glutathione concentrations (greater than 70%) and inhibition of microsomal Ca2+ transport and Ca2+-ATPase activity preceded the loss of cell viability, and initiation of lipid peroxidation paralleled the loss of viability. The depletion of glutathione concentrations was partially attributable to a reaction between glutathione and CEC to form S-[2-(DL-cysteinyl)ethyl]glutathione, which was identified by NMR and mass spectrometry. N-Acetyl-L-cysteine, vitamin E, and N,N'-diphenyl-p-phenylenediamine protected against the loss of cell viability. N,N'-Diphenyl-p-phenylenediamine inhibited CEC-initiated lipid peroxidation but did not protect against cell death at 4 h, indicating that lipid peroxidation was not the cause of cell death. The analogues S-ethyl-L-cysteine, S-(3-chloropropyl)-DL-cysteine, and S-(2-hydroxyethyl)-L-cysteine, which cannot form an episulfonium ion, were not cytotoxic, thus demonstrating a role for an episulfonium ion in the cytotoxicity associated with exposure to CEC and, possibly, 1,2-dichloroethane. These results show that an alteration in Ca2+ homeostasis and the generation of an electrophilic intermediate may be involved in the mechanism of cell death.  相似文献   

16.
The reactivity of the episulfonium ion derived from S-(2-chloroethyl)glutathione (CEG), the glutathione conjugate of 1,2-dichloroethane, with the catalytic sites of protein disulfide isomerase (PDI) was investigated. The two cysteine residues of the two active sites of PDI are expected to be the major targets of alkylation. PDI was incubated with equimolar to 100-fold excess CEG. The activity of PDI was irreversibly inhibited with a concurrent loss of two thiols; however, PDI oxidative refolding activity was not completely inhibited. With mass spectrometry, sequencing PDI identified one alkylation event on each of the N-terminal cysteine residues in the two active site peptides. PDI appears robust and able to maintain some activity by steric constraint. We have established that the episulfonium ion of CEG can adduct PDI and may have important toxicologic significance for 1,2-dichloroethane toxicity.  相似文献   

17.
The significance of glutathione S-conjugate in the regulation of glutathione synthesis was studied using human erythrocyte gamma-glutamylcysteine synthetase. Feedback inhibition of the enzyme by reduced glutathione was released by the addition of the glutathione S-conjugate (S-2,4-dinitrophenyl glutathione). A half-maximal effect of glutathione S-conjugate on gamma-glutamylcysteine synthetase activity was obtained at approximately 1 microM; 50 microM glutathione S-conjugate in the presence of 10 mM glutathione actually increased the enzyme activity twofold above uninhibited levels. Glutathione S-conjugate had no effect on the enzyme activity in the absence of glutathione. When erythrocytes were exposed to the electrophile 1-chloro-2,4-dinitrobenzene, which forms a glutathione S-conjugate by the catalytic reaction of glutathione S-transferase, the level of glutathione synthesis increased. These data suggest that glutathione S-conjugate plays a role in stimulating the synthesis of glutathione.  相似文献   

18.
In this investigation Salmonella typhimurium strain TA 1530 and TA 1535 were combined with isolated perfused rat liver. Samples of perfusate and bile produced were tested for mutagenicity after treatment with 1,2-dichloroethane (DCE), 1,2-dibromoethane (DBE) or 2-chloroethanol. The results are in good agreement with our previous experiments which indicate that both DEC and DBE are activated through conjugation with glutathione (GSH). Most GSH conjugates are normally excreted in bile. Following liver perfusion the bile was highly mutagenic after DCE and DBE treatments, while 2-chloroethanol did not have this effect. The highest mutagenic effect was seen 15--30 min after the addition of DCE or DBE. The production of mutagenic bile also occurred in mice treated in vivo with DCE. One possible metabolic endproduct of a GSH conjugate is the corresponding mercapturic acid. Thus synthetic N-acetyl-S-(2-chloroethyl)-L-cysteine was tested on TA 1535 and found to be as mutagenic as S-(2-chloroethyl)-L-cysteine in the concentration range 0.2--0.6 mumol/plate. Differences and similarities in the metabolism of DCE and vinyl chloride are discussed on the basis of these results.  相似文献   

19.
Cysteine conjugate beta-lyase has been purified from rat kidney cytosol. The enzyme is a 100,000-dalton dimer of two 55,000-dalton subunits and has an absorption maximum at 432 nm. The enzyme has phenylalanine alpha-keto-gamma-methiolbutyrate transaminase activity and appears to be identical to rat kidney cytosolic glutamine transaminase K. Metabolism of S-1,2-dichlorovinyl-L-cysteine (DCVC) by the purified enzyme was dependent on the presence of either alpha-keto-gamma-methiolbutyrate or a protein factor which is present in the cytosolic fraction of rat kidney cortex. The protein factor was identified as a flavin containing L-amino acid oxidase which oxidized DCVC to S-(1,2-dichlorovinyl)-3-mercapto-2-oxopropionic acid. S-(1,2-Dichlorovinyl)-3-mercapto-2-oxopropionic acid has not been previously reported as a metabolite of DCVC. The data also show that rat kidney cytosolic glutamine transaminase K catalyzes both a beta-elimination and a transamination reaction with DCVC when alpha-keto-gamma-methiolbutyrate is present and that amino acid oxidase and alpha-keto-gamma-methiolbutyrate stimulate the enzyme activity by providing amino acceptors. When incubations were done with DCVC as substrate in the presence of excess alpha-keto-gamma-methiolbutyrate, the beta-lyase catalyzed beta-elimination and transamination in a ratio of 1:1.3, respectively. Under conditions where most of the alpha-keto-gamma-methiolbutyrate was consumed, the beta-elimination predominated indicating that the S-1,2-dichlorovinyl-3-mercapto-2-oxopropionic acid pool was consumed by transamination after the alpha-keto-gamma-methiolbutyrate had been depleted. The data are discussed with regard to the importance of these pathways as regulators or participants in the toxicity of S-cysteine conjugates.  相似文献   

20.
Cysteine conjugate beta-lyase activity from rat kidney cortex was found in the cystosolic and mitochondrial fractions. With 2 mM S-(2-benzothiazolyl)-L-cysteine as the substrate, approximately two-thirds of the total beta-lyase activity was present in the cytosolic fraction. The kinetics of beta-lyase activity with three cysteine S-conjugates were different in the cytosolic and mitochondrial fractions, and the mitochondrial beta-lyase was much more sensitive to inhibition by aminooxyacetic acid than was the cytosolic activity. These results indicate that the beta-lyase activities in the two subcellular fractions are catalyzed by distinct enzymes. Nephrotoxic cysteine S-conjugates of halogenated hydrocarbons that require bioactivation by cysteine conjugate beta-lyase (S-(1,2-dichlorovinyl)-L-cysteine (DCVC), S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine, CTFC) were potent inhibitors of state 3 respiration in rat kidney mitochondria. Fractionation of mitochondria by digitonin treatment and comparison with marker enzyme distributions showed that the mitochondrial beta-lyase activity is localized in the outer mitochondrial membrane. Inhibition of the beta-lyase prevented the mitochondrial toxicity of DCVC and CTFC, and nonmetabolizable, alpha-methyl analogues of DCVC and CTFC were not toxic. Neither DCVC nor CTFC was toxic to mitoplasts, indicating that activation by the beta-lyase occurs on the outer membrane and may be essential for the expression of toxicity; in contrast, the direct acting nephrotoxin S-(2-chloroethyl)-DL-cysteine was toxic to both mitochondria and mitoplasts. Thus, the suborganelle localization of DCVC and CTFC bioactivation correlates with the observed pattern of toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号