首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mammalian dynamin-like protein 1 (DLP1), a member of the dynamin family of large GTPases, possesses mechanochemical properties known to constrict and tubulate membranes. In this study, we have combined two experimental approaches, induction of peroxisome proliferation by Pex11pbeta and expression of dominant-negative mutants, to test whether DLP1 plays a role in peroxisomal growth and division. We were able to localize DLP1 in spots on tubular peroxisomes in HepG2 cells. In addition, immunoblot analysis revealed the presence of DLP1 in highly purified peroxisomal fractions from rat liver and an increase of DLP1 after treatment of rats with the peroxisome proliferator bezafibrate. Expression of a dominant negative DLP1 mutant deficient in GTP hydrolysis (K38A) either alone or in combination with Pex11pbeta caused the appearance of tubular peroxisomes but had no influence on their intracellular distribution. In co-expressing cells, the formation of tubulo-reticular networks of peroxisomes was promoted, and peroxisomal division was completely inhibited. These findings were confirmed by silencing of DLP1 using siRNA. We propose a direct role for the dynamin-like protein DLP1 in peroxisomal fission and in the maintenance of peroxisomal morphology in mammalian cells.  相似文献   

2.
Orth T  Reumann S  Zhang X  Fan J  Wenzel D  Quan S  Hu J 《The Plant cell》2007,19(1):333-350
PEROXIN11 (PEX11) is a peroxisomal membrane protein in fungi and mammals and was proposed to play a major role in peroxisome proliferation. To begin understanding how peroxisomes proliferate in plants and how changes in peroxisome abundance affect plant development, we characterized the extended Arabidopsis thaliana PEX11 protein family, consisting of the three phylogenetically distinct subfamilies PEX11a, PEX11b, and PEX11c to PEX11e. All five Arabidopsis PEX11 proteins target to peroxisomes, as demonstrated for endogenous and cyan fluorescent protein fusion proteins by fluorescence microscopy and immunobiochemical analysis using highly purified leaf peroxisomes. PEX11a and PEX11c to PEX11e behave as integral proteins of the peroxisome membrane. Overexpression of At PEX11 genes in Arabidopsis induced peroxisome proliferation, whereas reduction in gene expression decreased peroxisome abundance. PEX11c and PEX11e, but not PEX11a, PEX11b, and PEX11d, complemented to significant degrees the growth phenotype of the Saccharomyces cerevisiae pex11 null mutant on oleic acid. Heterologous expression of PEX11e in the yeast mutant increased the number and reduced the size of the peroxisomes. We conclude that all five Arabidopsis PEX11 proteins promote peroxisome proliferation and that individual family members play specific roles in distinct peroxisomal subtypes and environmental conditions and possibly in different steps of peroxisome proliferation.  相似文献   

3.
The PEX11 peroxisomal membrane proteins are the only factors known to promote peroxisome division in multiple species. It has been proposed that PEX11 proteins have a direct role in peroxisomal fatty acid oxidation, and that they only affect peroxisome abundance indirectly. Here we show that PEX11 proteins are unique in their ability to promote peroxisome division, and that PEX11 overexpression promotes peroxisome division in the absence of peroxisomal metabolic activity. We also observed that mouse cells lacking PEX11beta display reduced peroxisome abundance, even in the absence of peroxisomal metabolic substrates, and that PEX11beta(-/-) mice are partially deficient in two distinct peroxisomal metabolic pathways, ether lipid synthesis and very long chain fatty acid oxidation. Based on these and other observations, we propose that PEX11 proteins act directly in peroxisome division, and that their loss has indirect effects on peroxisome metabolism.  相似文献   

4.
The PEX11 peroxisomal membrane proteins promote peroxisome division in multiple eukaryotes. As part of our effort to understand the molecular and physiological functions of PEX11 proteins, we disrupted the mouse PEX11alpha gene. Overexpression of PEX11alpha is sufficient to promote peroxisome division, and a class of chemicals known as peroxisome proliferating agents (PPAs) induce the expression of PEX11alpha and promote peroxisome division. These observations led to the hypothesis that PPAs induce peroxisome abundance by enhancing PEX11alpha expression. The phenotypes of PEX11alpha(-/-) mice indicate that this hypothesis remains valid for a novel class of PPAs that act independently of peroxisome proliferator-activated receptor alpha (PPARalpha) but is not valid for the classical PPAs that act as activators of PPARalpha. Furthermore, we find that PEX11alpha(-/-) mice have normal peroxisome abundance and that cells lacking both PEX11alpha and PEX11beta, a second mammalian PEX11 gene, have no greater defect in peroxisome abundance than do cells lacking only PEX11beta. Finally, we report the identification of a third mammalian PEX11 gene, PEX11gamma, and show that it too encodes a peroxisomal protein.  相似文献   

5.
In humans, defects in peroxisome biogenesis are the cause of lethal diseases typified by Zellweger syndrome. Here, we show that inactivating mutations in human PEX3 cause Zellweger syndrome, abrogate peroxisome membrane synthesis, and result in reduced abundance of peroxisomal membrane proteins (PMPs) and/or mislocalization of PMPs to the mitochondria. Previous studies have suggested that PEX3 may traffic through the ER en route to the peroxisome, that the COPI inhibitor, brefeldin A, leads to accumulation of PEX3 in the ER, and that PEX3 overexpression alters the morphology of the ER. However, we were unable to detect PEX3 in the ER at early times after expression. Furthermore, we find that inhibition of COPI function by brefeldin A has no effect on trafficking of PEX3 to peroxisomes and does not inhibit PEX3-mediated peroxisome biogenesis. We also find that inhibition of COPII-dependent membrane traffic by a dominant negative SAR1 mutant fails to block PEX3 transport to peroxisomes and PEX3-mediated peroxisome synthesis. Based on these results, we propose that PEX3 targeting to peroxisomes and PEX3-mediated peroxisome membrane synthesis may occur independently of COPI- and COPII-dependent membrane traffic.  相似文献   

6.
Peroxisomes are ubiquitous organelles that proliferate under different physiological conditions and can form de novo in cells that lack them. The endoplasmic reticulum (ER) has been shown to be the source of peroxisomes in yeast and plant cells. It remains unclear, however, whether the ER has a similar role in mammalian cells and whether peroxisome division or outgrowth from the ER maintains peroxisomes in growing cells. We use a new in cellula pulse-chase imaging protocol with photoactivatable GFP to investigate the mechanism underlying the biogenesis of mammalian peroxisomes. We provide direct evidence that peroxisomes can arise de novo from the ER in both normal and peroxisome-less mutant cells. We further show that PEX16 regulates this process by being cotranslationally inserted into the ER and serving to recruit other peroxisomal membrane proteins to membranes. Finally, we demonstrate that the increase in peroxisome number in growing wild-type cells results primarily from new peroxisomes derived from the ER rather than by division of preexisting peroxisomes.  相似文献   

7.
Peroxisomes are essential and dynamic organelles that allow cells to rapidly adapt and cope with changing environments and/or physiological conditions by modulation of both peroxisome biogenesis and turnover. Peroxisome biogenesis involves the assembly of peroxisome membranes and the import of peroxisomal matrix proteins. The latter depends on the receptor, PEX5, which recognizes peroxisomal matrix proteins in the cytosol directly or indirectly, and transports them to the peroxisomal lumen. In this review, we discuss the role of PEX5 ubiquitination in both peroxisome biogenesis and turnover, specifically in PEX5 receptor recycling, stability and abundance, as well as its role in pexophagy (autophagic degradation of peroxisomes).  相似文献   

8.
9.
Taras Y. Nazarko 《Autophagy》2017,13(5):991-994
Peroxisome biogenesis disorders (PBDs) is a group of diseases caused by mutations in one of the peroxins, proteins responsible for biogenesis of the peroxisomes. In recent years, it became clear that many peroxins (e.g., PEX3 and PEX14) play additional roles in peroxisome homeostasis (such as promoting autophagic degradation of peroxisomes or pexophagy), which are often opposite to their originally established functions in peroxisome formation and maintenance. Even more interesting, the peroxins that make up the peroxisomal AAA ATPase complex (AAA-complex) in yeast (Pex1, Pex6 and Pex15) or mammals (PEX1, PEX6, PEX26) are responsible for the downregulation of pexophagy. Moreover, this might be even their primary role in human: to prevent pexophagy by removing from the peroxisomal membrane the ubiquitinated peroxisomal matrix protein import receptor, Ub-PEX5, which is also a signal for the Ub-binding pexophagy receptor, NBR1. Remarkably, the peroxisomes rescued from pexophagy by autophagic inhibitors in PEX1G843D (the most common PBD mutation) cells are able to import matrix proteins and improve their biochemical function suggesting that the AAA-complex per se is not essential for the protein import function in human. This paradigm-shifting discovery published in the current issue of Autophagy has raised hope for up to 65% of all PBD patients with various deficiencies in the AAA-complex. Recognizing PEX1, PEX6 and PEX26 as pexophagy suppressors will allow treating these patients with a new range of tools designed to target mammalian pexophagy.  相似文献   

10.
We identified two proteins, Pex25 and Rho1, which are involved in reintroduction of peroxisomes in peroxisome-deficient yeast cells. These are, together with Pex3, the first proteins identified as essential for this process. Of the three members of the Hansenula polymorpha Pex11 protein family-Pex11, Pex25, and Pex11C-only Pex25 was required for reintroduction of peroxisomes into a peroxisome-deficient mutant strain. In peroxisome-deficient pex3 cells, Pex25 localized to structures adjacent to the ER, whereas in wild-type cells it localized to peroxisomes. Pex25 cells were not themselves peroxisome deficient but instead contained a slightly increased number of peroxisomes. Interestingly, pex11 pex25 double deletion cells, in which both peroxisome fission (due to the deletion of PEX11) and reintroduction (due to deletion of PEX25) was blocked, did display a peroxisome-deficient phenotype. Peroxisomes reappeared in pex11 pex25 cells upon synthesis of Pex25, but not of Pex11. Reintroduction in the presence of Pex25 required the function of the GTPase Rho1. These data therefore provide new and detailed insight into factors important for de novo peroxisome formation in yeast.  相似文献   

11.
Peroxisomes have pivotal roles in several metabolic processes, such as the detoxification of H2O2 and β-oxidation of fatty acids, and their functions are tightly regulated by multiple factors involved in peroxisome biogenesis, including protein transport. This study describes the isolation of an embryonic lethal Arabidopsis thaliana mutant, aberrant peroxisome morphology9 (apem9), which is compromised in protein transport into peroxisomes. The APEM9 gene was found to encode an unknown protein. Compared with apem9 having the nucleotide substitution, the knockdown mutants showed severe defects in peroxisomal functions and plant growth. We showed that expression of APEM9 altered PEROXIN6 (PEX6) subcellular localization from the cytosol to peroxisomes. In addition, we showed that PEX1 and PEX6 comprise a heterooligomer and that this complex was recruited to peroxisomal membranes via protein–protein interactions of APEM9 with PEX6. These findings show that APEM9 functions as an anchoring protein, similar to Pex26 in mammals and Pex15p in yeast. Interestingly, however, the identities of amino acids among these anchoring proteins are quite low. These results indicate that although the association of the PEX1-PEX6 complex with peroxisomal membranes is essential for peroxisomal functions, the protein that anchors this complex evolved uniquely in plants.  相似文献   

12.
13.
14.
The mammalian dynamin-like protein DLP1/Drp1 has been shown to mediate both mitochondrial and peroxisomal fission. In this study, we have examined whether hFis1, a mammalian homologue of yeast Fis1, which has been shown to participate in mitochondrial fission by an interaction with DLP1/Drp1, is also involved in peroxisomal growth and division. We show that hFis1 localizes to peroxisomes in addition to mitochondria. Through differential tagging and deletion experiments, we demonstrate that the transmembrane domain and the short C-terminal tail of hFis1 is both necessary and sufficient for its targeting to peroxisomes and mitochondria, whereas the N-terminal region is required for organelle fission. hFis1 promotes peroxisome division upon ectopic expression, whereas silencing of Fis1 by small interfering RNA inhibited fission and caused tubulation of peroxisomes. These findings provide the first evidence for a role of Fis1 in peroxisomal fission and suggest that the fission machinery of mitochondria and peroxisomes shares common components.  相似文献   

15.
Dynamin-like protein 1 (DLP1) and Pex11pbeta function in morphogenesis of peroxisomes. In the present work, we investigated whether Fis1 is involved in fission of peroxisomes. Endogenous Fis1 was morphologically detected in peroxisomes as well as mitochondria in wild-type CHO-K1 and DLP1-defective ZP121 cells. Subcellular fractionation studies also revealed the presence of Fis1 in peroxisomes. Peroxisomal Fis1 showed the same topology, i.e., C-tail anchored membrane protein, as the mitochondrial one. Furthermore, ectopic expression of FIS1 induced peroxisome proliferation in CHO-K1 cells, while the interference of FIS1 RNA resulted in tubulation of peroxisomes, hence reducing the number of peroxisomes. Fis1 interacted with Pex11pbeta, by direct binding apparently involving the C-terminal region of Pex11pbeta in the interaction. Pex11pbeta also interacted with each other, whereas the binding of Pex11pbeta to DLP1 was not detectable. Moreover, ternary complexes comprising Fis1, Pex11pbeta, and DLP1 were detected by chemical cross-linking. We also showed that the highly conserved N-terminal domain of Pex11pbeta was required for the homo-oligomerization of Pex11pbeta and indispensable for the peroxisome-proliferating activity. Taken together, these findings indicate that Fis1 plays important roles in peroxisome division and maintenance of peroxisome morphology in mammalian cells, possibly in a concerted manner with Pex11pbeta and DLP1.  相似文献   

16.
Peroxisome biogenesis requires various complex processes including organelle division, enlargement and protein transport. We have been studying a number of Arabidopsis apm mutants that display aberrant peroxisome morphology. Two of these mutants, apm2 and apm4, showed green fluorescent protein fluorescence in the cytosol as well as in peroxisomes, indicating a decrease of efficiency of peroxisome targeting signal 1 (PTS1)-dependent protein transport to peroxisomes. Interestingly, both mutants were defective in PTS2-dependent protein transport. Plant growth was more inhibited in apm4 than apm2 mutants, apparently because protein transport was more severely decreased in apm4 than in apm2 mutants. APM2 and APM4 were found to encode proteins homologous to the peroxins PEX13 and PEX12, respectively, which are thought to be involved in transporting matrix proteins into peroxisomes in yeasts and mammals. We show that APM2/PEX13 and APM4/PEX12 are localized on peroxisomal membranes, and that APM2/PEX13 interacts with PEX7, a cytosolic PTS2 receptor. Additionally, a PTS1 receptor, PEX5, was found to stall on peroxisomal membranes in both mutants, suggesting that PEX12 and PEX13 are components that are involved in protein transport on peroxisomal membranes in higher plants. Proteins homologous to PEX12 and PEX13 have previously been found in Arabidopsis but it is not known whether they are involved in protein transport to peroxisomes. Our findings reveal that APM2/PEX13 and APM4/PEX12 are responsible for matrix protein import to peroxisomes in planta.  相似文献   

17.
Membrane-associated events during peroxisomal protein import processes play an essential role in peroxisome functionality. Many details of these processes are not known due to missing spatial resolution of technologies capable of investigating peroxisomes directly in the cell. Here, we present the use of super-resolution optical stimulated emission depletion microscopy to investigate with sub-60-nm resolution the heterogeneous spatial organization of the peroxisomal proteins PEX5, PEX14, and PEX11 around actively importing peroxisomes, showing distinct differences between these peroxins. Moreover, imported protein sterol carrier protein 2 (SCP2) occupies only a subregion of larger peroxisomes, highlighting the heterogeneous distribution of proteins even within the peroxisome. Finally, our data reveal subpopulations of peroxisomes showing only weak colocalization between PEX14 and PEX5 or PEX11 but at the same time a clear compartmentalized organization. This compartmentalization, which was less evident in cases of strong colocalization, indicates dynamic protein reorganization linked to changes occurring in the peroxisomes. Through the use of multicolor stimulated emission depletion microscopy, we have been able to characterize peroxisomes and their constituents to a yet unseen level of detail while maintaining a highly statistical approach, paving the way for equally complex biological studies in the future.  相似文献   

18.
Zellweger cerebro-hepato-renal syndrome is a severe congenital disorder associated with defective peroxisomal biogenesis. At least 23 PEX genes have been reported to be essential for peroxisome biogenesis in various species, indicating the complexity of peroxisomal assembly. Cells from patients with peroxisomal biogenesis disorders have previously been shown to segregate into >/=12 complementation groups. Two patients assigned to complementation group G who had not been linked previously to a specific gene defect were confirmed as displaying a cellular phenotype characterized by a lack of even residual peroxisomal membrane structures. Here we demonstrate that this complementation group is associated with mutations in the PEX3 gene, encoding an integral peroxisomal membrane protein. Homozygous PEX3 mutations, each leading to C-terminal truncation of PEX3, were identified in the two patients, who both suffered from a severe Zellweger syndrome phenotype. One of the mutations involved a single-nucleotide insertion in exon 7, whereas the other was a single-nucleotide substitution eight nucleotides from the normal splice site in the 3' acceptor site of intron 10. Expression of wild-type PEX3 in the mutant cell lines restored peroxisomal biogenesis, whereas transfection of mutated PEX3 cDNA did not. This confirmed that the causative gene had been identified. The observation of peroxisomal formation in the absence of morphologically recognizable peroxisomal membranes challenges the theory that peroxisomes arise exclusively by growth and division from preexisting peroxisomes and establishes PEX3 as a key factor in early human peroxisome synthesis.  相似文献   

19.
Peroxisomes are highly dynamic organelles involved in various metabolic pathways. The division of peroxisomes is regulated by factors such as the PEROXIN11 (PEX11) proteins that promote peroxisome elongation and the dynamin-related proteins (DRPs) and FISSION1 (FIS1) proteins that function together to mediate organelle fission. In Arabidopsis thaliana, DRP3A/DRP3B and FIS1A (BIGYIN)/FIS1B are two pairs of homologous proteins known to function in both peroxisomal and mitochondrial division. Here, we report that DRP5B, a DRP distantly related to the DRP3s and originally identified as a chloroplast division protein, also contributes to peroxisome division. DRP5B localizes to both peroxisomes and chloroplasts. Mutations in the DRP5B gene lead to peroxisome division defects and compromised peroxisome functions. Using coimmunoprecipitation and bimolecular fluorescence complementation assays, we further demonstrate that DRP5B can interact or form a complex with itself and with DRP3A, DRP3B, FIS1A, and most of the Arabidopsis PEX11 isoforms. Our data suggest that, in contrast with DRP3A and DRP3B, whose orthologs exist across plant, fungal, and animal kingdoms, DRP5B is a plant/algal invention to facilitate the division of their organelles (i.e., chloroplasts and peroxisomes). In addition, our results support the notion that proteins involved in the early (elongation) and late (fission) stages of peroxisome division may act cooperatively.  相似文献   

20.
Peroxisome is a single-membrane organelle in eukaryotes. The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient peroxisome biogenesis disorders such as Zellweger syndrome. Two AAA peroxins, Pex1p and Pex6p, are encoded by PEX1 and PEX6, the causal genes for PBDs of complementation groups 1 and 4, respectively. PEX26 responsible for peroxisome biogenesis disorders of complementation group 8 codes for C-tail-anchored type-II membrane peroxin Pex26p, the recruiter of Pex1p-Pex6p complexes to peroxisomes. Pex1p is targeted to peroxisomes in a manner dependent on ATP hydrolysis, while Pex6p targeting requires ATP but not its hydrolysis. Pex1p and Pex6p are most likely regulated in their peroxisomal localization onto Pex26p via conformational changes by ATPase cycle. Pex5p is the cytosolic receptor for peroxisome matrix proteins with peroxisome targeting signal type-1 and shuttles between the cytosol and peroxisomes. AAA peroxins are involved in the export from peroxisomes of Pex5p. Pex5p is ubiquitinated at the conserved cysteine11 in a form associated with peroxisomes. Pex5p with a mutation of the cysteine11 to alanine, termed Pex5p-C11A, abrogates peroxisomal import of proteins harboring peroxisome targeting signals 1 and 2 in wild-type cells. Pex5p-C11A is imported into peroxisomes but not exported, hence suggesting an essential role of the cysteine residue in the export of Pex5p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号