首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conserved PIF helicase family appears to function in replication to ensure termination and passage through regions that slow or arrest replication fork movement. Findings in fission yeast extend evidence from budding yeast, and argue for universal mechanisms that ensure replication integrity.  相似文献   

2.
Blockage of replication fork progression often occurs during DNA replication, and repairing and restarting stalled replication forks are essential events in all organisms for the maintenance of genome integrity. The repair system employs processing enzymes to restore the stalled fork. In Archaea Hef is a well conserved protein that specifically cleaves nicked, flapped, and fork-structured DNAs. This enzyme contains two distinct domains that are similar to the DEAH helicase family and XPF nuclease superfamily proteins. Analyses of truncated mutant proteins consisting of each domain revealed that the C-terminal nuclease domain independently recognized and incised fork-structured DNA. The N-terminal helicase domain also specifically unwound fork-structured DNA and Holliday junction DNA in the presence of ATP. Moreover, the endonuclease activity of the whole Hef protein was clearly stimulated by ATP hydrolysis catalyzed by the N-terminal domain. These enzymatic properties suggest that Hef efficiently resolves stalled replication forks by two steps, which are branch point transfer to the 5'-end of the nascent lagging strand by the N-terminal helicase followed by template strand incision for leading strand synthesis by the C-terminal endonuclease.  相似文献   

3.
Pif-1 proteins are 5′→3′ superfamily 1 (SF1) helicases that in yeast have roles in the maintenance of mitochondrial and nuclear genome stability. The functions and activities of the human enzyme (hPif1) are unclear, but here we describe its DNA binding and DNA remodeling activities. We demonstrate that hPif1 specifically recognizes and unwinds DNA structures resembling putative stalled replication forks. Notably, the enzyme requires both arms of the replication fork-like structure to initiate efficient unwinding of the putative leading replication strand of such substrates. This DNA structure-specific mode of initiation of unwinding is intrinsic to the conserved core helicase domain (hPifHD) that also possesses a strand annealing activity as has been demonstrated for the RecQ family of helicases. The result of hPif1 helicase action at stalled DNA replication forks would generate free 3′ ends and ssDNA that could potentially be used to assist replication restart in conjunction with its strand annealing activity.  相似文献   

4.
The processing of stalled replication forks and the repair of collapsed replication forks are essential functions in all organisms. In fission yeast DNA junctions at stalled replication forks appear to be processed by either the Rqh1 DNA helicase or Mus81-Eme1 endonuclease. Accordingly, we show that the hypersensitivity to agents that cause replication fork stalling of mus81, eme1, and rqh1 mutants is suppressed by a Holliday junction resolvase (RusA), as is the synthetic lethality of a mus81(-) rqh1(-) double mutant. Recombinant Mus81-Eme1, purified from Escherichia coli, readily cleaves replication fork structures but cleaves synthetic Holliday junctions relatively poorly in vitro. From these data we propose that Mus81-Eme1 can process stalled replication forks before they have regressed to form a Holliday junction. We also implicate Mus81-Eme1 and Rqh1 in the repair of collapsed replication forks. Here Mus81-Eme1 and Rqh1 seem to function on different substrates because RusA can substitute for Mus81-Eme1 but not Rqh1.  相似文献   

5.
HUWE1 is a multi‐faceted E3 ubiquitin ligase of the HECT family with many confirmed substrates, but mechanistic understanding of its functional roles in signaling pathways remains limited. In this issue of EMBO Reports, Choe et al demonstrate a novel function for HUWE1 in promoting DNA damage tolerance mechanisms to bypass DNA lesions during replication stress, thereby preserving genome stability. The authors connect this role for HUWE1 with its function in maintaining H2AX monoubiquitination levels for efficient signaling at stalled replication forks 1 . Thus, this work highlights HUWE1 as a novel player in the replication stress response and prompts further investigation of its regulation during replication and other cellular processes.  相似文献   

6.
7.
8.
To ensure proper replication and segregation of the genome, eukaryotic cells have evolved surveillance systems that monitor and react to impaired replication fork progression. In budding yeast, the intra-S phase checkpoint responds to stalled replication forks by downregulating late-firing origins, preventing spindle elongation and allowing efficient resumption of DNA synthesis after recovery from stress. Mutations in this pathway lead to high levels of genomic instability, particularly in the presence of DNA damage. Here we demonstrate by chromatin immunoprecipitation that when yeast replication forks stall due to hydroxyurea (HU) treatment, DNA polymerases alpha and epsilon are stabilized for 40-60 min. This requires the activities of Sgs1, a member of the RecQ family of DNA helicases, and the ATM-related kinase Mec1, but not Rad53 activation. A model is proposed whereby Sgs1 helicase resolves aberrantly paired structures at stalled forks to maintain single-stranded DNA that allows RP-A and Mec1 to promote DNA polymerase association.  相似文献   

9.
Replication fork integrity, which is essential for the maintenance of genome stability, is monitored by checkpoint-mediated phosphorylation events. 14-3-3 proteins are able to bind phosphorylated proteins and were shown to play an undefined role under DNA replication stress. Exonuclease 1 (Exo1) processes stalled replication forks in checkpoint-defective yeast cells. We now identify 14-3-3 proteins as in vivo interaction partners of Exo1, both in yeast and mammalian cells. Yeast 14-3-3-deficient cells fail to induce Mec1-dependent Exo1 hyperphosphorylation and accumulate Exo1-dependent ssDNA gaps at stalled forks, as revealed by electron microscopy. This leads to persistent checkpoint activation and exacerbated recovery defects. Moreover, using DNA bi-dimensional electrophoresis, we show that 14-3-3 proteins promote fork progression under limiting nucleotide concentrations. We propose that 14-3-3 proteins assist in controlling the phosphorylation status of Exo1 and additional unknown targets, promoting fork progression, stability, and restart in response to DNA replication stress.  相似文献   

10.
Comment on: Piwko W, et al. EMBO J 2010; 29:4210-22, Duro E, et al. Mol Cell 2010; 40:632–44, O’Connell BC, et al. Mol Cell 2010; 40:645–57 and O’Donnell L, et al. Mol Cell 2010; 40:619–31.  相似文献   

11.
Huang and colleagues identify a human primase-polymerase that is required for stalled replication fork restart and the maintenance of genome integrity.EMBO reports (2013) 14 12, 1104–1112 doi:10.1038/embor.2013.159The successful duplication of genomic DNA during S phase is essential for the proper transmission of genetic information to the next generation of cells. Perturbation of normal DNA replication by extrinsic stimuli or intrinsic stress can result in stalled replication forks, ultimately leading to abnormal chromatin structures and activation of the DNA damage response. On formation of stalled replication forks, many DNA repair and recombination pathway proteins are recruited to resolve the stalled fork and resume proper DNA synthesis. Initiation of replication at sites of stalled forks differs from traditional replication and, therefore, requires specialized proteins to reactivate DNA synthesis. In this issue of EMBO reports, Wan et al [1] introduce human primase-polymerase 1 (hPrimpol1)/CCDC111, a novel factor that is essential for the restart of stalled replication forks. This article is the first, to our knowledge, to ascertain the function of human Primpol enzymes, which were originally identified as members of the archaeao-eukaryotic primase (AEP) family [2].Single-stranded DNA (ssDNA) forms at stalled replication forks because of uncoupling of the DNA helicase from the polymerase, and is coated by replication protein A (RPA) for stabilization and recruitment of proteins involved in DNA repair and restart of replication. To identify novel factors playing important roles in the resolution of stalled replication forks, Wan and colleagues [1] used mass spectrometry to identify RPA-binding partners. Among the proteins identified were those already known to be located at replication forks, including SMARCAL1/HARP, BLM and TIMELESS. In addition they found a novel interactor, the 560aa protein CCDC111. This protein interacts with the carboxyl terminus of RPA1 through its own C-terminal region, and localizes with RPA foci in cells after hydroxyurea or DNA damage induced by ionizing irradiation. Owing to the presence of AEP and zinc-ribbon-like domains at the amino-terminal and C-terminal regions, respectively [2], CCDC111 was predicted to have both primase and polymerase enzymatic activities, which was confirmed with in vitro assays, leading to the name hPrimpol1 for this unique enzyme.The most outstanding discovery in this article is that hPrimpol1 is required for the restart of DNA synthesis from a stalled replication fork (Fig 1). With use of a single DNA fibre assay, knock down of hPrimpol1 had no effect on normal replication-fork progression or the firing of new origins in the presence of replication stress. After removal of replication stress, however, the restart of stalled forks was significantly impaired. Furthermore, the authors observed that hPrimpol1 depletion enhanced the toxicity of replication stress to human cells. Together, these data suggest that hPrimpol1 is a novel guardian protein that ensures the proper re-initiation of DNA replication by control of the repriming and repolymerization of newly synthesized DNA.Open in a separate windowFigure 1The role of hPrimpol1 in stalled replication fork restart. (A) Under normal conditions, the replicative helicase unwinds parental DNA, generating ssDNA that is coated by RPA and serves as a template for leading and lagging strand synthesis. Aside from interacting with RPA bound to the short stretches of ssDNA, the role of hPrimpol1 in normal progression of replication forks is unknown. (B) Following repair of a stalled replication fork, (1) hPrimpol1 rapidly resumes DNA synthesis of long stretches of RPA-coated ssDNA located at the stalled fork site. Later, the leading-strand polymerase (2) or lagging-strand primase and polymerase (3) replace hPrimpol1 to complete replication of genomic DNA. RPA, replication protein A; ssDNA, single-stranded DNA.Eukaryotic DNA replication is initiated at specific sites, called origins, through the help of various proteins, including ORC, CDC6, CDT1 and the MCM helicase complex [3]. On unwinding of the parental duplexed DNA, lagging strand ssDNA is coated by the RPA complex and used as a template for newly synthesized daughter DNA. DNA primase, a type of RNA polymerase, catalyses short RNA primers on the RPA-coated ssDNA that facilitate further DNA synthesis by DNA polymerase. While the use of a short RNA primer is occasionally necessary to restart leading-strand replication, such as in the case of a stalled DNA polymerase, it is primarily utilized in lagging-strand synthesis for the continuous production of Okazaki fragments. The lagging-strand DNA polymerase must efficiently coordinate its action with DNA primase and other replication factors, including DNA helicase and RPA [4]. Cooperation between DNA polymerase and primase is disturbed after DNA damage, ultimately resulting in the collapse of stalled replication forks. Until now, it was believed that DNA primase and DNA polymerase performed separate and catalytically unique functions in replication-fork progression in human cells, but this report provides the first example, to our knowledge, of a single enzyme performing both primase and polymerase functions to restart DNA synthesis at stalled replication forks after DNA damage (Fig 1).… this report provides the first example of a single enzyme performing both primase and polymerase function to restart DNA synthesis at stalled replication forksA stalled replication fork, if not properly resolved, can be extremely detrimental to a cell, causing permanent cell-cycle arrest and, ultimately, death. Therefore, eukaryotic cells have developed many pathways for the identification, repair and restart of stalled forks [5]. RPA recognizes ssDNA at stalled forks and activates the intra-S-phase checkpoint pathway, which involves various signalling proteins, including ATR, ATRIP and CHK1 [6]. This checkpoint pathway halts cell-cycle progression until the stalled forks are properly repaired and restarted. Compared with the recognition and repair of stalled forks, the mechanism of fork restart is relatively elusive. Studies have, however, begun to shed light on this process. For instance, RPA-directed SMARCAL1 has been discovered to be important for restart of DNA replication in bacteria and humans [7]. Together with the identification of hPrimpol1, these findings have helped to expand the knowledge of the mechanism of restarting DNA replication. Furthermore, both reports raise many questions regarding the cooperative mechanism of hPrimpol1 and SMARCAL1 with RPA at stalled forks to ensure genomic stability and proper fork restart [7].First, these findings raise the question of why cells need the specialized hPrimpol1 to restart DNA replication at stalled forks rather than using the already present DNA primase and polymerase. One possibility is that other DNA polymerases are functionally inhibited due to the response of the cell to DNA damage. Although the cells are ready to restart replication, the impaired polymerases might require additional time to recover after DNA damage, necessitating the use of hPrimpol1. In support of this idea, we found that the p12 subunit of DNA polymerase δ is degraded by CRL4CDT2 E3 ligase after ultraviolet damage [8]. As a result, alternative polymerases, such as hPrimpol1, could compensate for temporarily non-functioning traditional polymerases. A second explanation is that the polymerase and helicase uncoupling after stalling of a fork results in long stretches of ssDNA that are coated with RPA. To restart DNA synthesis, cells must quickly reprime and polymerize large stretches of ssDNA to prevent renewed fork collapse. By its constant interaction with RPA1, hPrimpol1 is present on the ssDNA and can rapidly synthesize the new strand of DNA after the recovery of stalled forks. Third, the authors found that the association of hPrimpol1 with RPA1 is independent of its functional AEP and zinc-ribbon-like domains and occurs in the absence of DNA damage. These results might indicate a role for hPrimpol1 in normal replication fork progression, but further work is necessary to determine whether that is true.The discovery of hPrimpol1 is also important in an evolutionary contextSeveral questions remain. First, what is the fidelity of the polymerase activity? Other specialized polymerases that act at DNA damage sites sometimes have the ability to misincorporate a nucleotide across from a site of damage, for example pol-eta and -zeta [9]. It will be interesting to know whether hPrimpol1 is a high-fidelity polymerase or an error-prone polymerase. Second, is the polymerase only brought into action after fork stalling? If hPrimpol1 is an error-prone polymerase, one could envision other types of DNA damage that can be bypassed by hPrimpol1. Third, is the primase selective for ribonucleotides, or can it also incorporate deoxynucleotides? The requirement of the same domain—AEP—for primase and polymerase activities raises the possibility that NTPs or dNTPs could be used for primase or polymerase activities.The discovery of hPrimpol1 is also important in an evolutionary context. In 2003, an enzyme with catalytic activities like that of hPrimpol1 was discovered in a thermophilic archeaon and in Gram-positive bacteria [10]. This protein had several catalytic activities in vitro, including ATPase, primase and polymerase. In contrast to these Primpol enzymes, those capable of primase and polymerase functions had not been found in higher eukaryotes, which suggested that evolutionary pressures forced a split of these dual-function enzymes. Huang et al''s report suggests, however, that human cells do in fact retain enzymes similar to Primpol. In summary, the role of hPrimpol1 at stalled forks broadens our knowledge of the restart of DNA replication in human cells after fork stalling, allowing for proper duplication of genomic DNA, and provides insight into the evolution of primases in eukaryotes.  相似文献   

12.
In the October 5 issue of Cell, Singleton et al. report the crystal structure of RecG protein bound to an analog of a stalled DNA replication fork. This structure shows how RecG can recognize branched DNA structures and suggests a mechanism for fork reversal, an early event in recombination-dependent reinitiation of DNA replication.  相似文献   

13.
In this issue of Molecular Cell, De Piccoli et al. (2012) show that, contrary to current models of DNA replication checkpoint function, replication proteins remain associated with each other and with replicating DNA when replication is stressed in checkpoint-deficient cells.  相似文献   

14.
Branzei D  Foiani M 《DNA Repair》2007,6(7):994-1003
DNA replication is an essential process that occurs in all growing cells and needs to be tightly regulated in order to preserve genetic integrity. Eukaryotic cells have developed multiple mechanisms to ensure the fidelity of replication and to coordinate the progression of replication forks. Replication is often impeded by DNA damage or replication blocks, and the resulting stalled replication forks are sensed and protected by specialized surveillance mechanisms called checkpoints. The replication checkpoint plays an essential role in preventing the breakdown of stalled replication forks and the accumulation of DNA structures that enhance recombination and chromosomal rearrangements that ultimately lead to genomic instability and cancer development. In addition, the replication checkpoint is thought to assist and coordinate replication fork restart processes by controlling DNA repair pathways, regulating chromatin structure, promoting the recruitment of proteins to sites of damage, and controlling cell cycle progression. In this review we focus mainly on the results obtained in budding yeast to discuss on the multiple roles of checkpoints in maintaining fork integrity and on the enzymatic activities that cooperate with the checkpoint pathway to promote fork resumption and repair of DNA lesions thereby contributing to genome integrity.  相似文献   

15.
Failure to reactivate either stalled or collapsed replication forks is a source of genomic instability in both prokaryotes and eukaryotes. In prokaryotes, dedicated fork repair systems that involve both recombination and replication proteins have been identified genetically and characterized biochemically. Replication conflicts are solved through several pathways, some of which require recombination and some of which operate directly at the stalled fork. Some recent biochemical observations support models of direct fork repair in which the removal of the blocking template lesion is not always required for replication restart.  相似文献   

16.
During replication arrest, the DNA replication checkpoint plays a crucial role in the stabilization of the replisome at stalled forks, thus preventing the collapse of active forks and the formation of aberrant DNA structures. How this checkpoint acts to preserve the integrity of replication structures at stalled fork is poorly understood. In Schizosaccharomyces pombe, the DNA replication checkpoint kinase Cds1 negatively regulates the structure-specific endonuclease Mus81/Eme1 to preserve genomic integrity when replication is perturbed. Here, we report that, in response to hydroxyurea (HU) treatment, the replication checkpoint prevents S-phase-specific DNA breakage resulting from Mus81 nuclease activity. However, loss of Mus81 regulation by Cds1 is not sufficient to produce HU-induced DNA breaks. Our results suggest that unscheduled cleavage of stalled forks by Mus81 is permitted when the replisome is not stabilized by the replication checkpoint. We also show that HU-induced DNA breaks are partially dependent on the Rqh1 helicase, the fission yeast homologue of BLM, but are independent of its helicase activity. This suggests that efficient cleavage of stalled forks by Mus81 requires Rqh1. Finally, we identified an interplay between Mus81 activity at stalled forks and the Chk1-dependent DNA damage checkpoint during S-phase when replication forks have collapsed.  相似文献   

17.
Deoxyribonucleic acid (DNA) topoisomerases are essential for removing the supercoiling that normally builds up ahead of replication forks. The camptothecin (CPT) Top1 (topoisomerase I) inhibitors exert their anticancer activity by reversibly trapping Top1-DNA cleavage complexes (Top1cc's) and inducing replication-associated DNA double-strand breaks (DSBs). In this paper, we propose a new mechanism by which cells avoid Top1-induced replication-dependent DNA damage. We show that the structure-specific endonuclease Mus81-Eme1 is responsible for generating DSBs in response to Top1 inhibition and for allowing cell survival. We provide evidence that Mus81 cleaves replication forks rather than excises Top1cc's. DNA combing demonstrated that Mus81 also allows efficient replication fork progression after CPT treatment. We propose that Mus81 cleaves stalled replication forks, which allows dissipation of the excessive supercoiling resulting from Top1 inhibition, spontaneous reversal of Top1cc, and replication fork progression.  相似文献   

18.
Restarting stalled replication forks is vital to avoid fatal replication errors. Previously, it was demonstrated that hydroxyurea-stalled replication forks rescue replication either by an active restart mechanism or by new origin firing. To our surprise, using the DNA fibre assay, we only detect a slightly reduced fork speed on a UV-damaged template during the first hour after UV exposure, and no evidence for persistent replication fork arrest. Interestingly, no evidence for persistent UV-induced fork stalling was observed even in translesion synthesis defective, Polη(mut) cells. In contrast, using an assay to measure DNA molecule elongation at the fork, we observe that continuous DNA elongation is severely blocked by UV irradiation, particularly in UV-damaged Polη(mut) cells. In conclusion, our data suggest that UV-blocked replication forks restart effectively through re-priming past the lesion, leaving only a small gap opposite the lesion. This allows continuation of replication on damaged DNA. If left unfilled, the gaps may collapse into DNA double-strand breaks that are repaired by a recombination pathway, similar to the fate of replication forks collapsed after hydroxyurea treatment.  相似文献   

19.
The replication checkpoint coordinates the cell cycle with DNA replication and recombination, preventing genome instability and cancer. The budding yeast Rad53 checkpoint kinase stabilizes stalled forks and replisome-fork complexes, thus preventing the accumulation of ss-DNA regions and reversed forks at collapsed forks. We searched for factors involved in the processing of stalled forks in HU-treated rad53 cells. Using the neutral-neutral two-dimensional electrophoresis technique (2D gel) and psoralen crosslinking combined with electron microscopy (EM), we found that the Exo1 exonuclease is recruited to stalled forks and, in rad53 mutants, counteracts reversed fork accumulation by generating ss-DNA intermediates. Hence, Exo1-mediated fork processing resembles the action of E. coli RecJ nuclease at damaged forks. Fork stability and replication restart are influenced by both DNA polymerase-fork association and Exo1-mediated processing. We suggest that Exo1 counteracts fork reversal by resecting newly synthesized chains and resolving the sister chromatid junctions that cause regression of collapsed forks.  相似文献   

20.
Degradation and collapse of stalled replication forks are main sources of genomic instability, yet the molecular mechanisms for protecting forks from degradation/collapse are not well understood. Here, we report that human CST (CTC1‐STN1‐TEN1) proteins, which form a single‐stranded DNA‐binding complex, localize at stalled forks and protect stalled forks from degradation by the MRE11 nuclease. CST deficiency increases MRE11 binding to stalled forks, leading to nascent‐strand degradation at reversed forks and ssDNA accumulation. In addition, purified CST complex binds to 5’ DNA overhangs and directly blocks MRE11 degradation in vitro, and the DNA‐binding ability of CST is required for blocking MRE11‐mediated nascent‐strand degradation. Our results suggest that CST inhibits MRE11 binding to reversed forks, thus antagonizing excessive nascent‐strand degradation. Finally, we uncover that CST complex inactivation exacerbates genome instability in BRCA2 deficient cells. Collectively, our findings identify the CST complex as an important fork protector that preserves genome integrity under replication perturbation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号