首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Choi NH  Kim JG  Yang DJ  Kim YS  Yoo MA 《Aging cell》2008,7(3):318-334
Age-associated changes in stem cell populations have been implicated in age-related diseases, including cancer. However, little is known about the underlying molecular mechanisms that link aging to the modulation of adult stem cell populations. Drosophila midgut is an excellent model system for the study of stem cell renewal and aging. Here we describe an age-related increase in the number and activity of intestinal stem cells (ISCs) and progenitor cells in Drosophila midgut. We determined that oxidative stress, induced by paraquat treatment or loss of catalase function, mimicked the changes associated with aging in the midgut. Furthermore, we discovered an age-related increase in the expression of PVF2, a Drosophila homologue of human PDGF/VEGF, which was associated with and required for the age-related changes in midgut ISCs and progenitor cell populations. Taken together, our findings suggest that PDGF/VEGF may play a central role in age-related changes in ISCs and progenitor cell populations, which may contribute to aging and the development of cancer stem cells.  相似文献   

3.
Age-related changes in long-lived tissue-resident stem cells may be tightly linked to aging and age-related diseases such as cancer. Centrosomes play key roles in cell proliferation, differentiation and migration. Supernumerary centrosomes are known to be an early event in tumorigenesis and senescence. However, the age-related changes of centrosome duplication in tissue-resident stem cells in vivo remain unknown. Here, using anti-γ-tubulin and anti-PH3, we analyzed mitotic intestinal stem cells with supernumerary centrosomes in the adult Drosophila midgut, which may be a versatile model system for stem cell biology. The results showed increased centrosome amplification in intestinal stem cells of aged and oxidatively stressed Drosophila midguts. Increased centrosome amplification was detected by overexpression of PVR, EGFR, and AKT in intestinal stem cells/enteroblasts, known to mimic age-related changes including hyperproliferation of intestinal stem cells and hyperplasia in the midgut. Our data show the first direct evidence for the age-related increase of centrosome amplification in intestinal stem cells and suggest that the Drosophila midgut is an excellent model for studying molecular mechanisms underlying centrosome amplification in aging adult stem cells in vivo.  相似文献   

4.
The Drosophila adult posterior midgut has been identified as a powerful system in which to study mechanisms that control intestinal maintenance, in normal conditions as well as during injury or infection. Early work on this system has established a model of tissue turnover based on the asymmetric division of intestinal stem cells. From the quantitative analysis of clonal fate data, we show that tissue turnover involves the neutral competition of symmetrically dividing stem cells. This competition leads to stem-cell loss and replacement, resulting in neutral drift dynamics of the clonal population. As well as providing new insight into the mechanisms regulating tissue self-renewal, these findings establish intriguing parallels with the mammalian system, and confirm Drosophila as a useful model for studying adult intestinal maintenance.  相似文献   

5.
Stem cell‐mediated tissue repair is a promising approach for many diseases. Mammalian intestine is an actively regenerating tissue such that epithelial cells are constantly shedding and underlying precursor cells are constantly replenishing the loss of cells. An imbalance of these processes will lead to intestinal diseases including inflammation and cancer. Mammalian intestinal stem cells (ISCs) are located in bases of crypts but at least two groups of cells have been cited as stem cells. Moreover, precursor cells in the transit amplifying zone can also proliferate. The involvement of multiple cell types makes it more difficult to examine tissue damage response in mammalian intestine. In adult Drosophila midgut, the ISCs are the only cells that can go through mitosis. By feeding pathogenic bacteria and stress inducing chemicals to adult flies, we demonstrate that Drosophila ISCs in the midgut can respond by increasing their division. The resulting enteroblasts, precursor cells for enterocytes and enteroendocrine cells, also differentiate faster to become cells resembling enterocyte lineage. These results are consistent with the idea that Drosophila midgut stem cells can respond to tissue damage induced by pathogens and initiate tissue repair. This system should allow molecular and genetic analyses of stem cell‐mediated tissue repair. J. Cell. Physiol. 220: 664–671, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
7.
Although much is known about injury-induced signals that increase rates of Drosophila melanogaster midgut intestinal stem cell (ISC) proliferation, it is largely unknown how ISC activity returns to quiescence after injury. In this paper, we show that the bone morphogenetic protein (BMP) signaling pathway has dual functions during midgut homeostasis. Constitutive BMP signaling pathway activation in the middle midgut mediated regional specification by promoting copper cell differentiation. In the anterior and posterior midgut, injury-induced BMP signaling acted autonomously in ISCs to limit proliferation and stem cell number after injury. Loss of BMP signaling pathway members in the midgut epithelium or loss of the BMP signaling ligand decapentaplegic from visceral muscle resulted in phenotypes similar to those described for juvenile polyposis syndrome, a human intestinal tumor caused by mutations in BMP signaling pathway components. Our data establish a new link between injury and hyperplasia and may provide insight into how BMP signaling mutations drive formation of human intestinal cancers.  相似文献   

8.
The three germ layers in Drosophila are established by both the invagination of the ventral furrow, which internalizes the anterior midgut and mesoderm primordia, and the invagination of the posterior midgut primordium. The invaginations of these primordia occur by similar cell shape changes. The gene hierarchies responsible for positioning each primordium within the epithelial blastoderm are well understood. By going further down in the hierarchy, we hope to identify the genes whose products are directly involved in the mechanisms that change the cell shape. Presumably these mechanisms are similar in Drosophila and in other organisms.  相似文献   

9.
Recent studies have suggested the involvement of epigenetic factors such as methyl-CpG-binding protein-2 (MeCP2) in tumorigenesis. In addition, cancer may represent a stem cell-based disease, suggesting that understanding of stem cell regulation could provide valuable insights into the mechanisms of tumorigenesis. However, the function of epigenetic factors in stem cell regulation in adult tissues remains poorly understood. In the present study, we investigated the role of human MeCP2 (hMeCP2), a bridge factor linked to DNA modification and histone modification, in stem cell proliferation using adult Drosophila midgut, which appears to be an excellent model system to study stem cell biology. Results show that enterocyte (EC)-specific expression of hMeCP2 in adult midgut using an exogenous GAL4/UAS expression system induced intestinal stem cell (ISC) proliferation marked by staining with anti-phospho-histone H3 antibody and BrdU incorporation assays. In addition, hMeCP2 expression in ECs activated extracellular stress-response kinase signals in ISCs. Furthermore, expression of hMeCP2 modulated the distribution of heterochromatin protein-1 in ECs. Our data suggests the hypothesis that the expression of hMeCP2 in differentiated ECs stimulates ISC proliferation, implying a role of MeCP2 as a stem cell regulator.  相似文献   

10.
Adult tissue homeostasis requires a tight balance between the removal of old or damaged cells and the production of new ones. Such processes are usually driven by dedicated stem cells that reside within specific tissue locations or niches.The intestinal epithelium has a remarkable regenerative capacity, which has made it a prime paradigm for the study of stem cell-driven tissue self-renewal. The discovery of the presence of stem cells in the adult midgut of the fruit fly Drosophila melanogaster has significantly impacted our understanding of the role of stem cells in intestinal homeostasis. Here we will review the current knowledge of the main mechanisms involved in the regulation of tissue homeostasis in the adult Drosophila midgut, with a focus on the role of stem cells in this process. We will also discuss processes involving acute or chronic disruption of normal intestinal homeostasis such as damage-induced regeneration and ageing.  相似文献   

11.
Epithelial cells of the digestive tracts of most animals are short-lived, and are constantly replenished by the progeny of long-lived, resident intestinal stem cells. Proper regulation of intestinal stem cell maintenance, proliferation and differentiation is critical for maintaining gut homeostasis. Here we review recent genetic studies of stem cell-mediated homeostatic growth in the Drosophila midgut and the mouse small intestine, highlighting similarities and differences in the mechanisms that control stem cell proliferation and differentiation.  相似文献   

12.
13.
Intestinal stem cell (ISC) self-renewal and proliferation are directed by Wnt/β-catenin signaling in mammals, whereas aberrant Wnt pathway activation in ISCs triggers the development of human colorectal carcinoma. Herein, we have utilized the Drosophila midgut, a powerful model for ISC regulation, to elucidate the mechanisms by which Wingless (Wg)/Wnt regulates intestinal homeostasis and development. We provide evidence that the Wg signaling pathway, activation of which peaks at each of the major compartment boundaries of the adult intestine, has essential functions. Wg pathway activation in the intestinal epithelium is required not only to specify cell fate near compartment boundaries during development, but also to control ISC proliferation within compartments during homeostasis. Further, in contrast with the previous focus on Wg pathway activation within ISCs, we demonstrate that the primary mechanism by which Wg signaling regulates ISC proliferation during homeostasis is non-autonomous. Activation of the Wg pathway in absorptive enterocytes is required to suppress JAK-STAT signaling in neighboring ISCs, and thereby their proliferation. We conclude that Wg signaling gradients have essential roles during homeostasis and development of the adult intestine, non-autonomously controlling stem cell proliferation inside compartments, and autonomously specifying cell fate near compartment boundaries.  相似文献   

14.
O'Brien LE  Soliman SS  Li X  Bilder D 《Cell》2011,147(3):603-614
Throughout life, adult organs continually adapt to variable environmental factors. Adaptive mechanisms must fundamentally differ from homeostatic maintenance, but little is known about how physiological factors elicit tissue remodeling. Here, we show that specialized stem cell responses underlie the adaptive resizing of a mature organ. In the adult Drosophila midgut, intestinal stem cells interpret a nutrient cue to "break homeostasis" and drive growth when food is abundant. Activated in part by niche production of insulin, stem cells direct a growth program through two altered modes of behavior: accelerated division rates and predominance of symmetric division fates. Together, these altered modes produce a net increase in total intestinal cells, which is reversed upon withdrawal of food. Thus, tissue renewal programs are not committed to maintain cellular equilibrium; stem cells can remodel organs in response to physiological triggers.  相似文献   

15.
A dynamic pool of undifferentiated somatic stem cells proliferate and differentiate to replace dead or dying mature cell types and maintain the integrity and function of adult tissues. Intestinal stem cells (ISCs) in the Drosophila posterior midgut are a well established model to study the complex genetic circuitry that governs stem cell homeostasis. Exposure of the intestinal epithelium to environmental toxins results in the expression of cytokines and growth factors that drive the rapid proliferation and differentiation of ISCs. In the absence of stress signals, ISC homeostasis is maintained through intrinsic pathways. In this study, we uncovered the PDGF- and VEGF-receptor related (Pvr) pathway as an essential regulator of ISC homeostasis under unstressed conditions in the posterior midgut. We found that Pvr is coexpressed with its ligand Pvf2 in ISCs and that hyperactivation of the Pvr pathway distorts the ISC developmental program and drives intestinal dysplasia. In contrast, we show that mutant ISCs in the Pvf/Pvr pathway are defective in homeostatic proliferation and differentiation, resulting in a failure to generate mature cell types. Additionally, we determined that extrinsic stress signals generated by enteropathogenic infection are epistatic to the hypoplasia generated in Pvf/Pvr mutants, making the Pvr pathway unique among all previously studied intrinsic pathways. Our findings illuminate an evolutionarily conserved signal transduction pathway with essential roles in metazoan embryonic development and direct involvement in numerous disease states.  相似文献   

16.
Previous work has suggested that many stem cells can be found in microanatomic niches, where adjacent somatic cells of the niche control the differentiation and proliferation states of their resident stem cells. Recently published work examining intestinal stem cells (ISCs) in the adult Drosophila midgut suggests a new paradigm where some stem cells actively control the cell fate decisions of their daughters. Here, we review recent literature((1)) demonstrating that, in the absence of a detectable stem cell niche, multipotent Drosophila ISCs modulate the Notch signaling pathway in their adjacent daughter cells in order to specify the differentiated lineages of their descendants. These observations made in Drosophila are challenging and advancing our understanding of stem cell biology.  相似文献   

17.
The Drosophila midgut is an excellent model for evaluation of gene networks that regulate adult stem cell proliferation and differentiation. The Drosophila p38b (D-p38b) gene has been shown to be involved in intestinal stem cell (ISC) proliferation and differentiation in the adult midgut. Here, we report that D-p38b gene expression is regulated by DREF (DNA replication-related element binding factor) in the adult midgut. We have identified a DRE in the 5′-flanking region of the D-p38b gene and showed that DREF could bind to this DRE via a gel mobility shift assay and a ChIP assay. Base-substitution mutations of the D-p38b promoter DRE and analyses of transformants carrying D-p38b-lacZ or D-p38b-DREmut-lacZ indicated that this DRE is required for the activity of the D-p38b gene promoter. Furthermore, by using the GAL4-UAS system, we showed that DREF regulates the activity of the D-p38b gene promoter in adult ISCs and progenitors. In addition, the D-p38b knockdown phenotypes in the midgut were rescued by DREF overexpression, suggesting a functional link between these two factors. Our results suggest that the D-p38b gene is regulated by the DREF pathway and that DREF is involved in the regulation of proliferation and differentiation of Drosophila ISCs and progenitors.  相似文献   

18.
Regulatory peptides in fruit fly midgut   总被引:1,自引:0,他引:1  
Regulatory peptides were immunolocalized in the midgut of the fruit fly Drosophila melanogaster. Endocrine cells were found to produce six different peptides: allatostatins A, B and C, neuropeptide F, diuretic hormone 31, and the tachykinins. Small neuropeptide-F (sNPF) was found in neurons in the hypocerebral ganglion innervating the anterior midgut, whereas pigment-dispersing factor was found in nerves on the most posterior part of the posterior midgut. Neuropeptide-F (NPF)-producing endocrine cells were located in the anterior and middle midgut and in the very first part of the posterior midgut. All NPF endocrine cells also produced tachykinins. Endocrine cells containing diuretic hormone 31 were found in the caudal half of the posterior midgut; these cells also produced tachykinins. Other endocrine cells produced exclusively tachykinins in the anterior and posterior extemities of the midgut. Allatostatin-immunoreactive endocrine cells were present throughout the midgut. Those in the caudal half of the posterior midgut produced allatostatins A, whereas those in the anterior, middle, and first half of the posterior midgut produced allatostatin C. In the middle of the posterior midgut, some endocrine cells produced both allatostatins A and C. Allatostatin-C-immunoreactive endocrine cells were particularly prominent in the first half of the posterior midgut. Allatostatin B/MIP-immunoreactive cells were not consistently found and, when present, were only weakly immunoreactive, forming a subgroup of the allatostatin-C-immunoreactive cells in the posterior midgut. Previous work on Drosophila and other insect species suggested that (FM)RFamide-immunoreactive endocrine cells in the insect midgut could produce NPF, sNPF, myosuppressin, and/or sulfakinins. Using a combination of specific antisera to these peptides and transgenic fly models, we showed that the endocrine cells in the adult Drosophila midgut produced exclusively NPF. Although the Drosophila insulin gene Ilp3 was abundantly expressed in the midgut, Ilp3 was not expressed in endocrine cells, but in midgut muscle.  相似文献   

19.
Adult stem cells play an essential role throughout life, maintaining tissue and organ function by providing a reservoir of cells for homeostasis and repair. Maintenance and activity of adult stem cells have been the focus of numerous studies that have revealed stem cell-intrinsic factors and signals from the local microenvironment that regulate stem cell behavior. A growing body of work has provided evidence that circulating, systemic factors also contribute to the regulation of stem cell behavior in numerous tissues. We have demonstrated that Drosophila male germline stem cells (GSCs) and intestinal stem cells (ISCs) respond to changes in nutrient availability, specifically amino acids. Furthermore, we have shown that insulin signaling plays an important role in mediating the effects of changes in nutritional conditions. Notably, insulin signaling is cell-autonomously required within male GSCs for maintenance. Here we discuss our data regarding the effects and mechanisms by which changes in systemic nutritional conditions may influence the maintenance and activity of adult stem cells via insulin signaling.Key words: Drosophila, stem cells, nutrition, insulin, niche  相似文献   

20.
Adult stem cells play an essential role?throughout life, maintaining tissue and organ function by providing a reservoir of cells for homeostasis and repair. Maintenance and activity of adult stem cells have been the focus of numerous studies that have revealed stem cell-intrinsic factors and signals from the local microenvironment that regulate stem cell behavior. A growing body of work has provided evidence that circulating, systemic factors also contribute to the regulation of stem cell behavior in numerous tissues. We have demonstrated that Drosophila male germline stem cells (GSCs) and intestinal stem cells (ISCs) respond to changes in nutrient availability, specifically amino acids. Furthermore, we have shown that insulin signaling plays an important role in mediating the effects of changes in nutritional conditions. Notably, insulin signaling is cell-autonomously required within male GSCs for maintenance. Here we discuss our data regarding the effects and mechanisms by which changes in systemic nutritional conditions may influence the maintenance and activity of adult stem cells via insulin signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号