首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary A double immunofluorescence method was devised to localize simultaneously urotensin-I (UI) and -II (UII) immunoreactivities in the caudal neurosecretory system of the goby, Gillichthys mirabilis. In a sequential fashion, sections of the posterior spinal cord and urophysis were treated with antiserum to corticotropin-releasing factor (CRF) that cross-reacts with UI, fluorescein-conjugated sheep anti-rabbit IgG, biotinylated anti-UII and rhodamine-conjugated avidin. UI and UII immunoreactivities appeared to coexist in some neurons and in most fibers and urophysial tissue; the remainder of the fibers and urophysis and the majority of neurons were immunoreactive for CRF/ UI only. No convincing evidence of immunoreactivity for UII only was found. A few nonreactive cells were seen, but these may not be neurosecretory neurons. The two immunoreactive cell types were not segregated topographically, and the intensity of perikaryal immunofluorescence for CRF/UI was variable. To explain these results a hypothesis that all caudal neurosecretory cells may synthesize both UI and UII and that immunoreactive differences may reflect different states of cellular activity, is suggested. This sequential double immunofluorescence method offers several advantages over other techniques and is especially useful for co-localization studies when primary antisera from different species are not available.  相似文献   

2.
Summary The lower spinal cord including the caudal neurosecretory system of the pike (Esox lucius) was investigated by means of light and electron microscopy and also with the fluorescence histochemical method of Falck and Hillarp for the visualization of monoamines. A system of perikarya displaying a specific green fluorescence of remarkably high intensity is disclosed in the basal part of the ventrolateral and lateral ependymal lining of the central canal. The area corresponding to the upper half of the urophysis has most cells; their number decreases caudally and cranially. A considerable number of their beaded neurites reach the neurosecretory neurons by different routes but are only occasionally present in the actual neurohemal region. An intensely fluorescent dendritic process is sometimes observed terminating with a bulbous enlargement at the ependymal surface in the central canal. Besides small, electron lucid vesicles in the terminal parts of the axons, the neurons contain numerous large dense-core vesicles which can apparently take up and store 5-hydroxydopa (5-OH-dopa) and 5-hydroxydopamine (5-OH-DA). These neurons are thought to be adrenergic and to contain a primary catecholamine, possibly noradrenaline.The varicosities of the adrenergic terminals are repeatedly observed contiguous to some of the neurosecretory axons, the membrane distance at places of contacts generally ranging from 150–200 Å. Another type of nerve terminals that contain only small empty vesicles, also after pretreatment with 5-OH-dopa or 5-OH-DA, are frequent among the neurosecretory neurons. These axons establish synaptic contacts with membrane thickenings on most of the neurosecretory neurons. Thus it seems that the neurosecretory neurons are innervated by neurons morphologically similar to cholinergic neurons and that part of them receive an adrenergic innervation, which supports the view hat the caudal neurosecretory cells do not constitute a functionally homogeneous population.Supported by the Deutsche Forschungsgemeinschaft and the Joachim-Jungius Gesellschaft zur Förderung der Wissenschaften, Hamburg.Supported by the Swedish Natural Research Council (No. 99-35). This work was in part carried out within a research organization sponsored by the Swedish Medical Research Council (Projects No. B70-14X-56-06 and B70-14X-712-05).Supported by the Deutsche Forschungsgemeinschaft and USPHS Research Grant TW 00295-02.  相似文献   

3.
In order to make an immunohistochemical analysis of the development of the caudal neurosecretory system of the chum salmon, Oncorhynchus keta, we employed the peroxidase-anti-peroxidase technique using antisera specific for urotensins (U) I and II on artificially reared embryos, larvae, and juveniles of this species. Immunoreactivities for UI and UII were first demonstrated in the embryo immediately before hatching, showing labeled perikarya and fibers in the most caudal region of the spinal cord where the presumptive caudal neurosecretory system is located. However, distinct differentiation of the histological neurohemal organ had not yet begun in the embryo. Immunoreactive perikarya and fibers gradually increased in number, and an elaborate urophysis comparable to that of adults was demonstrated in the larvae about 5 months after hatching. At this stage, weak immunoreactivity against UI was detected in the neurohypophysis.  相似文献   

4.
The development of the caudal neurosecretory system (CNSS) of the Nile tilapia, Oreochromis niloticus, has been investigated by means of UI/oCRF (urotensin I/ovine corticotropin-releasing factor) immunohistochemistry and transmission electron microscopy. UI-like immunoreactive perikarya and fibers are first detected in the caudal spinal cord of larval fish about 4 days after hatching (stage 21). In the region of the future urophysis two bundles of strongly immunoreactive neurosecretory fibers are observed. At this stage, neurosecretory axons terminate on the meninx sheath of the spinal cord with immature neurosecretory terminals. The histogenesis of the urophysis begins at stage 24. The future neurohemal organ consists of a small ventral swelling of the spinal cord, which is associated with dilated vessels. At this stage, neurosecretory axons terminate on the basal lamina of the ingrowing blood vessels. Further development occurs by means of progressive branching of vessels and the concomitant increase in the number of neurosecretory terminals. In the caudal spinal cord, immunoreactive neurons also increase in number and progressively differentiate morphologically. Typical features of the mature CNSS are recognizable in 4-month-old juveniles. Data suggest that in tilapia both the synthesis and the release of urophysial hormones begin before morphogenesis of the neurohemal organ takes place.  相似文献   

5.
This paper is concerned with part of the role and function of the caudal neurosecretory system of the charr,Salvelinus leucomaenis, studied by immunohistochemistry. In order to elucidate the different histologic changes, we examined the immunoreactivities of urotenisn I (UI) and urotensin II (UII) in 3 experimental groups: the feral (river) fish, the fresh-water aquarium-, and sea water aquarium-retained fish. Coexistence of UI and UII was demonstrated in most of the smaller and larger neurons distributed in and near the urophyseal system of all 3 groups. However, some of the larger neurons were immunoreactive only to a single hormone, UI or UII. Merely a few neurons indicated no reactivity for either UI or UII. No such clearcut differences were encountered immunohistochemically in the 3 groups. Neuronal and urophysial immuno-reactivity to UI of feral and fresh-water-retained fish was slightly stronger than that of sea water-retained fish. Moreover, in sea water-retained fish, the intensity of immunoreactivity for UI was variable, and the number of neurons positive for UII only was somewhat larger than that in feral and fresh-water-retained fish. A series of UII-positive cerebrospinal fluid (CSF)-contacting neurons were seen in the ependymal and subependymal layers ventral to the central canal of the spinal cord in every group. These CSF-contacting neurons might constitute another neurosecretory system aside from the ordinary caudal neurosecretory system equipped with urophysis. In contrast to the hypothalamohypophysial neurosecretory system, the caudal neurosecretory system did not show any significant changes among the 3 groups. This suggests that urotensins I and II have no essential role in osmoregulation of the charr.  相似文献   

6.
Conlon JM 《Peptides》2008,29(5):651-657
During the past 20 years, urotensin II (UII) has progressed from being a peptide synthesized only in the urophysis of the caudal neurosecretory system of teleost fish to being considered an important physiological regulator in mammals with implications for the pathogenesis of a range of human cardiovascular and renal diseases. The "liberation" of UII from the urophysis was a gradual process and involved the sequential realization that (a) UII is present not only in the urophysis but also in the central nervous systems (CNS) of teleosts, (b) UII peptides, similar in structure to the urophysial peptides, are present in the diffuse caudal neurosecretory systems and/or CNS of species less evolutionarily advanced than teleosts, including Agnatha, thereby showing that UII is a phylogenetically ancient peptide, (c) UII is present in the brain and spinal cord of a tetrapod, the green frog Rana ridibunda, and (d) the UII gene and its specific receptor (GPR14/UT) are expressed in the CNS and certain peripheral tissues of mammals, including the human. The discovery that the genomes of mammals contain an additional gene encoding a UII-related peptide (URP) and the availability of highly effective peptide and non-peptide antagonists to investigate the role of UII in human physiology and pathophysiology ensure that the peptide will remain "center stage" for several years to come.  相似文献   

7.
Summary The caudal neurosecretory complex of poeciliids has previously been shown to be innervated by extranuclear and intrinsic serotonergic projections. In the present study, immunohistochemical techniques were used to characterize fibers originating from serotonin neurons intrinsic to the caudal spinal cord. Bipolar and multipolar neurons were oriented ventromedially, and contained numerous large granular vesicles. Three types of serotonergic fibers were distinguished based on their distribution and morphology. Intrinsic Type-A fibers branched into varicose segments near the ventrolateral surface of the spinal cord and contacted the basal lamina beneath the leptomeninges. Type-B fibers coursed longitudinally to enter the urophysis, where they diverged and terminated around fenestrated capillaries. Labelled vesicles in Type-A and Type-B terminals were the same size as those in labelled cells and in unlabelled neurosecretory terminals in the urophysis. Type-C small varicose fibers branched within the neuropil of the caudal neurosecretory complex. Serotonin may be secreted into the submeningeal cerebrospinal fluid, the urophysis, and the caudal vein by Type-A and Type-B fibers, whereas, Type-C fibers may be processes of serotonergic interneurons in the neuroendocrine nucleus. The possibility that urotensins I and II or arginine vasotocin were colocalized in the processes of the intrinsic serotonin neurons was investigated immunohistochemically. The negative results of these experiments suggest that serotonin-containing neurons may represent a neurochemically distinct subpopulation in the caudal neurosecretory complex.  相似文献   

8.
Summary In three species of teleosts — carp Cyprinus carpio; grass carp Ctenopharyngodon idella; and crucian carp Carassius auratus — the caudal neurosecretory system displays small, medium-sized and large neurons. Urotensin I (UI)-immunoreactive and UI-nonreactive neurons were found in all three groups; in general, the number of the latter neurons exceeded that of the former. Noteworthy are: (i) UI-immunoreactive fibers in the caudal spinal cord and (ii) dense accumulations of UI-immunoreactive product around the capillaries of the urophysis. In two species of elasmobranchs — cat shark Heterodontus japonicas and swell shark Cephaloscyllium umbratile — neurosecretory neurons decreased in size in rostro-caudal direction. Most of the neurosecretory perikarya, their axons and the corresponding neurohemal areas were UI-immunoreactive, but a small number of secretory neurons was devoid of immunoreaction. Oxytocin, arginine vasopressin, substance P, somatostatin, neurotensin, vasoactive intestinal polypeptide and gastrin-releasing peptide were not detected in the caudal neurosecretory system of the carp.  相似文献   

9.
The neural neurosecretory system of fishes produces two biologically active neuropeptides, i.e. the corticotropin-releasing hormone paralog urotensin I (UI) and the somatostatin-related peptide urotensin II (UII). In zebrafish, we have recently characterized two UII variants termed UIIalpha and UIIbeta. In the present study, we have investigated the distribution of UI, UIIalpha and UIIbeta mRNAs in different organs by quantitative RT-PCR analysis and the cellular localization of the three mRNAs in the spinal cord by in situ hybridization (ISH) histochemistry. The data show that the UI gene is mainly expressed in the caudal portion of the spinal cord and, to a lesser extent, in the brain, while the UIIalpha and the UIIbeta genes are exclusively expressed throughout the spinal cord. Single-ISH labeling revealed that UI, UIIalpha and UIIbeta mRNAs occur in large cells, called Dahlgren cells, located in the ventral part of the caudal spinal cord. Double-ISH staining showed that UI, UIIalpha and UIIbeta mRNAs occur mainly in distinct cells, even though a few cells were found to co-express the UI and UII genes. The differential expression of UI, UIIalpha and UIIbeta genes may contribute to the adaptation of Dahlgren cell activity during development and/or in various physiological conditions.  相似文献   

10.
Summary In the four species of elasmobranchs examined (Triakis scyllia, Heterodontus japonicus, Scyliorhinus torazame, Dasyatis akajei), all identifiable caudal neurosecretory cells and their corresponding neurohemal areas showed urotensin II (UII)-immunoreactivity with varied intensity. To localize urotensin I (UI) in the caudal neurosecretory system of the dogfish, Triakis scyllia, h-CRF (1–20) antiserum that cross-reacts with UI was used in place of UI antiserum. CRF/UI-immunoreactivity was demonstrated in the neurosecretory cells and neurohemal areas. A considerable number of neurons showed both UII- and CRF/UI-immunoreactivities, suggesting that UII and UI are produced in the same neurosecretory cells. However, some neurons exhibited UII-immunoreactivity, but no CRF/UI-immunoreactivity. Cells immunoreactive only to CRF antiserum were not detected. At least two populations of neurons exist in the dogfish caudal neurosecretory system: (i) cells immunoreactive for both CRF/UI and UII, and (ii) cells immunoreactive for UII. The dorsal cells of the lamprey, Lampetra japonica, did not react with either UII or CRF antiserum.  相似文献   

11.
Although evidence exists that nitric oxide (NO) mediates neuroendocrine secretion in mammals, the involvement of NO in the neuroendocrine regulation of non-mammalian vertebrates has yet to be investigated in detail. The present review conveys several recent data, suggesting that NO plays a modulatory role in the caudal neurosecretory system (CNSS) of teleosts. The presence and distribution of neuronal NO synthase (nNOS) was demonstrated in the CNSS of the Nile tilapia Oreochromis niloticus by means of NADPHd histochemistry, NOS immunohistochemistry, NOS immunogold electron microscopy, the citrulline assay for NOS activity and Western blot analysis. NO production by the caudal spinal cord homogenates was also evaluated by the oxyhemoglobin assay. On the whole, these findings indicate that caudal neurosecretory cells express NOS enzymes and presumably produce NO as a cotransmitter. Moreover, the comparison of the nNOS distribution with that of urotensins I and II (UI and UII) suggests that neurosecretory Dahlgren cells belong to two different functional subpopulations: a population of UI/UII secreting nitrergic neurons and a population of non-nitrergic neurons, which principally secrete UII. These results implicate NO as a putative modulator of the release of urotensins from the neurosecretory axon terminals. Therefore, like in mammals, NO appears to influence neuroendocrine secretion in teleosts.  相似文献   

12.
13.
Summary Methionine-enkephalin (Met-enk) was detected by immunocytochemistry and radioimmunoassay in the caudal neuro-secretory system of the carp Cyprinus carpio. Some cells showing urotensin I (UI)-immunoreactivity reacted to Met-enk antiserum, but others did not. Neurons with urotensin II (UII)-immunoreactivity did not react to Met-enk antiserum; neurons with both UI and UII immunoreactivities also displayed a negative Met-enk reaction. Met-enk was detected by radioimmunoassay in the urophysis, although the content was relatively small compared with that found in other parts of the central nervous system and in the pituitary.  相似文献   

14.
The distribution of urotensin I (UI) and corticotropin-releasing factor (CRF) immunoreactive (IR) structures was studied in the central nervous system (CNS) of the white sucker using the peroxidase-antiperoxidase immunocytochemical procedure. The close sequence homology between both peptides resulted in a high degree of crossreactivity. This was resolved by saturating the antisera solutions with heterologous antigens and specificity tests were done by adding excess of homologous peptides. UI immunoreactivity was seen in all of the identifiable caudal spinal cord neurosecretory cells, in their processes projecting to the urophysis, in thin beaded fibres coursing along the spinal cord, in brain stem, hypothalamus, proximal pars distalis and, especially, in the telencephalon. Some IR-UI specific and IR-CRF specific parvocellular neurons were also identified in the caudo-ventral tuberal region and ventral telencephalon. The IR-CRF was mainly present in parvocellular and magnocellular perikarya of the nucleus preopticus and in the preoptic-neurohypophysial pathway. Dense networks of IR-CRF reacting beaded fibres were also located in the lateral and posterior recessus nuclei. In the pituitary, IR-CRF fibre bundles were seen mainly in the neurointermediate lobe and in the rostral pars distalis. The cells of origin of the extraurophyseal system of IR-UI fibres in the sucker CNS have not been identified. The distribution of CRF immunostaining correlates well with the documented knowledge of CNS structures involved in the control of ACTH secretion in the goldfish. The probability of the occurrence of two UI-CRF related molecules, or of two different forms resulting from a common precursor molecule, forming two separate neuronal systems in the sucker CNS seems likely.  相似文献   

15.
THE UROPHYSIS AND THE CAUDAL NEUROSECRETORY SYSTEM OF FISHES   总被引:1,自引:0,他引:1  
1. The caudal neurosecretory system is defined in teleosts as a complex of secretory neurones (Dahlgren cells) in the caudal spinal cord leading by a tract to neurohaemal tissue organized as a typical neurosecretory storage-release organ: the urophysis. 2. The teleost urophysis is generally a distinct, easily recognizable, lobate structure of variable external form. Significant morphological variations lie in the organization of the neurosecretory fibres in relation to the vascular bed and in the degree of penetration of the meninx by the neurosecretory fibres to form an organ external to the spinal cord proper. 3. The elasmobranch caudal system is composed of large cells with short axons projecting to a diffuse vascular bed; there is no organized urophysis. 4. The caudal neurosecretory system and its urophysis appear late in post larval development by comparison with the hypothalamic neurosecretory system. The Dahlgren cells originate from the ependyma in development and also during regeneration of the caudal system in adult life. 5.The elasmobranch system may represent the more primitive condition, and stages in the evolution of the advanced urophysial types can be visualized. The particular histology shown by the caudal system appears to have taxonomic significance. 6.The cytology of the Dahlgren cell and its neurosecretory material is described. The proteinaceous neurosecretory material has an affinity for acid stains but not for the Gomori stains or reagents demonstrating SH/SS groups. The inclusions visible at the light-microscope level are aggregates of elementary neurosecretory granules, 800–2500A diameter, which originate from Golgi centres. The possible participation of preterminal axonal regions–and tubular systems evident therein—in the formation of neurosecretory material is considered. 7.The structure of the axon terminals raises questions about the way in which neurohormone may be released into the blood. Small vesicles have been variously interpreted as cholinergic synaptic vesicles and as products of the fragmentation of membranes of elementary neurosecretory granules. Evidence for the release of ‘neuro-secretion centripetally’ into the cerebrospinal fluid also exists. 8.Functional analysis of the caudal neurosecretory system has proven most difficult, The bulk of earlier data and more recent information indicate a role in ionic regulation. Increased sodium uptake by the gills of goldfish has been reported, as a result of administration of urophysial extract, and electrophysiological studies indicate a responsiveness of the system to variations in blood sodium ion concentration. The urophysis also has a definite pressor effect in eels and will stimulate water retention in anurans. The early claim of Enami that the system was involved in buoyancy regulation has never been substantiated. It must be admitted that the function of this system, virtually ubiquitous in teleost and elasmobranch fishes at least, has been anything but established and still represents a major challenge to comparative physiologists.  相似文献   

16.
鲫鱼尾部神经分泌系统显微和亚显微结构的季节性变化   总被引:5,自引:0,他引:5  
鲫鱼尾部神经分泌系统的神经分泌细胞和它的轴突中可观察到各种不同电子密度的颗粒。在性腺各个不同的发育阶段,该系统的分泌物具有累积、充满、释放和恢复这样一种周期性变化,由此说明鲫鱼的尾部神经分泌系统和它的生殖有关。  相似文献   

17.
The immunohistochemical localization of nine different neuropeptides was studied in the central nervous system of the amphioxus, Branchiostoma belcheri. In the brain, perikarya immunoreactive for urotensin I and FMRFamide were localized in the vicinity of the central canal. One of the processes of each of these perikarya was found to cross the dorso ventral slit-like lumen of the central canal. Oxytocin-immunoreactive short fibers, but not perikarya, were detected in the ventral part of the brain. Perikarya immunoreactive for arginine vasopressin/vasotocin, oxytocin and FMRFamide were widely distributed in the spinal cord. Arginine vasopressin/vasotocin-immunoreactive fibers often made contacts with Rohde cell axons. Angiotensin II-immunoreactive perikarya were observed in the posterior half of the spinal cord, and urotensin I-immunoreactive perikarya were found in the caudal region of the spinal cord. Cholecystokinin/gastrin-immunoreactive fibers, but not perikarya, were detected in the spinal cord; some extended as far as the ependymal layer of the cerebral ventricle. No colocalization of the peptides examined was observed. No immunoreactivity for atrial and brain natriuretic peptides nor for urotensin II was detected. The present study indicates that there are at least six separate neuronal systems that contain different peptides, respectively, in the central nervous system of the amphioxus. Their functions remain to be determined.Part of this investigation has previously been presented in abstract form (Uemura et al. 1989)  相似文献   

18.
Electrical stimuli applied to the olfactory tract for one minute caused partial depletion, but for two to five minutes resulted in complete depletion of the neurosecretory material (NSM) from the Dahlgren cells as well as from the urophysis. However, if similar stimuli were directly applied to the caudal spinal cord for one minute, the NSM was completely depleted. The neurosecretory granules were reaccumulated in the neurons within fifteen minutes after the stimuli were cut of A rapid depletion of the NSM from the caudal neurons was correlated with their electrical properties and rapid transduction of nervous information into the hormonal message. The immediate response of the caudal neurons to the olfactory tract stimulation suggested that the former are synaptically controlled by a center in the brain.  相似文献   

19.
Summary The caudal neurosecretory system of Clupea melanostoma is described. The urophyseal area in this species is merely a spinal cord enlargement divided into two distinct zones: a ventral and ventrolateral vascular zone where neurosecretory material is concentrated, and a dorsal cell-rich area where the perikarya of the neurosecretory cells are found.The hypothesis is advanced that the first-named vascular area has developed into the more differentiated urophysis of the less primitive teleosts while the dorsal cell-rich area has become part of the filum terminale. Two main types of neurosecretory cells are described.This work was supported by grant L 96 Z from the Consejo Nacional de Investigaciones Cientificas y Técnicas.  相似文献   

20.
The filum terminale and caudal ampulla of amphioxus were studied by electron microscopy. The filum terminale consists of ependymal cells whose cilia are directed caudally. Remarkably, nerve fibres course through the filum terminale and caudal ampulla and end on the basal lamina forming neuro-connective structures. Moreover, these nerve boutons are divisible into several classes according to their vesicle content. Boutons containing large dense-cored vesicles are very similar in appearance to the neurosecretory terminals found in the caudal spinal cord of some vertebrates. These observations on nerve fibres suggest that a primitive neurosecretory system similar to the fish urophysis is present in the amphioxus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号