首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone marrow stroma contains mesenchymal stem cells (MSC) which are progenitor cells, at least for tissues arising from mesechyma. The study of MSC biology yields controversial data. Therefore further experiments are needed to characterize these cells. The aim of our research was to compare primary cultures and subcultures of stromal precursor cells isolated from rat bone marrow. Long-term cultures of these cells isolated from 5 animals have been obtained. Morphological, immunophenotypic, and functional (capacity to osteogenic differentiation) characteristics of the cells have been investigated. We show that the cell morphology in the cultures is highly heterogenic. Morphological cell types are described. Heterogeneity of stromal cells declines on late passages. Cell cultures isolated from different animals have the same immunophenotypic markers (CD90, CD44, CD54, CD106, CD45, CD11b) but different morphological characteristics and a different capacity to osteogenic differentiation during long-term cultivation. The data show that more specific markers and functional tests should be applied to identify MSC.  相似文献   

2.
Background aimsAlthough bone marrow (BM) stromal cells (SC; BMSC) isolated from adherent cultures of untreated BM are known to contain both committed and uncommitted osteogenic cells, it remains unknown whether BMSC isolated either by hemolysis or Ficoll centrifugation also contain both of these populations.MethodsDifferences in the osteogenic cell populations of rat BMSC isolated from untreated, hemolyzed or Ficoll-treated BM were analyzed by in vivo transplantation, flow cytometry, alkaline phosphatase (ALP) assay, real-time polymerase chain reaction (PCR) and alizarin red staining.ResultsTransplantation of non-cultured samples indicated that the Ficolled BMSC contained the lowest number of committed osteogenic cells. Flow cytometric analysis of cultured, non-induced samples showed that the percentage of ALP-positive cells was significantly lower in Ficolled BMSC. Quantitative ALP assays confirmed that the lowest ALP activity was in the Ficolled BMSC. Hemolyzed BMSC also contained lower numbers of committed osteogenic cells than untreated BMSC, but still more than Ficolled BMSC. Interestingly, the Ficolled BMSC showed the greatest levels of osteogenic ability when cultured in osteogenic induction medium.ConclusionsThese findings suggest that, although Ficolled BMSC rarely contain committed osteogenic cells, they are able to show comparable or even greater levels of osteogenic ability after induction, possibly because they contain a greater proportion of uncommitted stem cells. In contrast, induction is optional but recommended for both untreated and hemolyzed BMSC before use, because both these groups contain both committed and uncommitted osteogenic cells. These findings are of significant importance when isolating BMSC for use in bone tissue engineering.  相似文献   

3.
The results of the cloning of fibroblastic colony-forming units (CFU-F) from the bone marrow of normal sites of the spongy bones were analysed in 250 orthopaedic patients. It has been shown that the activity of CFU-F was changing during a year. The number of negative results of CFU-F's cloning were 33%, 60% and 50% in March, April and October respectively. The absolute values of CFU-F cloning were lower in March and April than in other months. The seasonal changes in the activity of CFU-F in human bone marrow should be taken into consideration when studying the physiology and pathology of the bone and hemopoietic system, and in clinical practice.  相似文献   

4.

Introduction

The objective of the present study was to investigate the role of the stromal cell-derived factor 1 (SDF-1)/CXCR4 axis in TNF-induced mobilization of osteoclast precursors (OCPs) from bone marrow.

Methods

OCPs were generated from bone marrow cells of TNF-transgenic mice or wild-type mice treated with TNF or PBS. The percentage of CD11b+/Gr-1-/lo OCPs was assessed by fluorescence-activated cell sorting. OCP migration to the SDF-1 gradient and the osteoclast forming potency were assessed in chemotaxis/osteoclastogenic assays. SDF-1 expression was assessed by real-time RT-PCR, ELISA and immunostaining in primary bone marrow stromal cells, in the ST2 bone marrow stromal cell line, and in bones from TNF-injected mice.

Results

OCPs generated in vitro from wild-type mice migrated to SDF-1 gradients and subsequently gave rise to osteoclasts in response to RANKL and macrophage colony-stimulating factor. TNF reduced SDF-1 expression by ST2 cells. Bone marrow stromal cells from TNF-transgenic mice produced low levels of SDF-1. TNF treatment of wild-type mice decreased the SDF-1 concentration in bone marrow extracts and decreased the SDF-1 immunostaining of bone marrow stromal cells, and it also increased the circulating OCP numbers. The percentage of bone marrow CXCR4+ OCPs was similar in TNF-transgenic mice and wild-type littermates and in TNF-treated and PBS-treated wild-type mice.

Conclusion

Systemically elevated TNF levels inhibit bone marrow stromal cell production of SDF-1 and increase the release of bone marrow OCPs to the peripheral blood. Disruption of the SDF-1/CXCR4 axis by TNF may play an important role in mediating OCP mobilization from the bone marrow cavity in chronic inflammatory arthritis.  相似文献   

5.

Introduction

We analyzed the prevalence of cardiovascular (CV) disease in patients with rheumatoid arthritis (RA) and its association with traditional CV risk factors, clinical features of RA, and the use of disease-modifying antirheumatic drugs (DMARDs) in a multinational cross-sectional cohort of nonselected consecutive outpatients with RA (The Questionnaires in Standard Monitoring of Patients with Rheumatoid Arthritis Program, or QUEST-RA) who were receiving regular clinical care.

Methods

The study involved a clinical assessment by a rheumatologist and a self-report questionnaire by patients. The clinical assessment included a review of clinical features of RA and exposure to DMARDs over the course of RA. Comorbidities were recorded; CV morbidity included myocardial infarction, angina, coronary disease, coronary bypass surgery, and stroke. Traditional risk factors recorded were hypertension, hyperlipidemia, diabetes mellitus, smoking, physical inactivity, and body mass index. Unadjusted and adjusted hazard ratios (HRs) (95% confidence interval [CI]) for CV morbidity were calculated using Cox proportional hazard regression models.

Results

Between January 2005 and October 2006, the QUEST-RA project included 4,363 patients from 48 sites in 15 countries; 78% were female, more than 90% were Caucasian, and the mean age was 57 years. The prevalence for lifetime CV events in the entire sample was 3.2% for myocardial infarction, 1.9% for stroke, and 9.3% for any CV event. The prevalence for CV risk factors was 32% for hypertension, 14% for hyperlipidemia, 8% for diabetes, 43% for ever-smoking, 73% for physical inactivity, and 18% for obesity. Traditional risk factors except obesity and physical inactivity were significantly associated with CV morbidity. There was an association between any CV event and age and male gender and between extra-articular disease and myocardial infarction. Prolonged exposure to methotrexate (HR 0.85; 95% CI 0.81 to 0.89), leflunomide (HR 0.59; 95% CI 0.43 to 0.79), sulfasalazine (HR 0.92; 95% CI 0.87 to 0.98), glucocorticoids (HR 0.95; 95% CI 0.92 to 0.98), and biologic agents (HR 0.42; 95% CI 0.21 to 0.81; P < 0.05) was associated with a reduction of the risk of CV morbidity; analyses were adjusted for traditional risk factors and countries.

Conclusion

In conclusion, prolonged use of treatments such as methotrexate, sulfasalazine, leflunomide, glucocorticoids, and tumor necrosis factor-alpha blockers appears to be associated with a reduced risk of CV disease. In addition to traditional risk factors, extra-articular disease was associated with the occurrence of myocardial infarction in patients with RA.  相似文献   

6.
Cellular populations with phenotypes similar to multipotent mesenchymal stromal cells were isolated from two different sources, including human bone marrow (BM) and subcutaneous adipose tissue (SAT). Comparative analysis of the efficiency of differentiation in the direction of osteogenesis has revealed morphological changes confirmed by staining with Alizarin red and von Kossa in bone marrow cells at the 14th day and in adipose tissue cells at the 28th day of cultivation in the medium with inductors. Analysis of expression of the osteopontin, osteocalcin, and bone sialoprotein genes in RT-PCR reactions has detected essential differences in the potential of these cells to differentiate into bone tissue cells. Cells isolated from BM of both the control and experimental groups were positive for octeopontin (OP) on the 14th day. Unlike these cells, in cells isolated from SAT in medium without an inductor, no product of OP gene expression was identified. In the cells subjected to differentiation, OP appeared at day 14. In the BM cells, octeocalcin (OC) was found at the 14th day, while the bone sialoprotein (BS) was found at the 21st day of cultivation in induction medium. In cells isolated from SAT, OC, and BS were not detected, even at the 28th day after the beginning of induction.  相似文献   

7.
Bone marrow stromal cells (MSCs) have the capability of differentiating into mesenchymal and non-mesenchymal lineages. In this study, MSCs isolated from adult Sprague-Dawley rats were cultured to proliferation, followed by in vitro induction under specific conditions. The results demonstrated that MSCs were transdifferentiated into cells with the Schwann cell (SC) phenotypes according to their morphology and immunoreactivities to SC surface markers including S-100, glial fibrillary acidic protein (GFAP) and low-affinity nerve growth factor receptor (p75). Consequently, rat adult MSCs can be induced in vitro to differentiate into SC-like cells, thus developing an abundant and accessible SC reservoir to meet the requirements of constructing tissue engineered nerve grafts for peripheral nerve repair.  相似文献   

8.
The ability of rat skin fibroblasts (RSF) and human periodontal ligament fibroblasts (HPL) to inhibit the formation of mineralised bone nodules in rat bone marrow stromal cell (BMSC) cultures was studied. Co-culture of HPL or RSF with BMSC resulted in a large reduction of bone nodule formation when compared with controls. Conditioned medium from HPL or RSF cultures inhibited bone nodule formation in a dose-dependent manner. HPL-conditioned medium depressed cell proliferation and alkaline phosphatase expression in BMSC cultures. These effects were not due to increased cytotoxicity or nutrient depletion. Inhibitory activity was recovered in a fraction of less than 1 kD following ultrafiltration and was insensitive to freeze-thawing. The inhibitory activity was blocked when HPL cultures were grown in the presence of 10(-5) M indomethacin. Dose-dependent inhibiton of bone nodule formation was also observed in cultures incubated with prostaglandins E2 (at 10(-6) M) or F2 alpha (at 10(-7) M). The results indicate that fibroblasts may inhibit osteoblast differentiation and function in part by release of soluble factors including prostaglandins.  相似文献   

9.
An intensive search is underway to identify candidates to replace the cells that degenerate in Parkinson's disease (PD). To date, no suitable substitute has been found. We have recently found that adult rat bone marrow stromal cells (MSCs) can be induced to assume a neuronal phenotype in vitro. These findings may have particular relevance to the treatment of PD. We now report that adult MSCs express multiple dopaminergic genes, suggesting that they are potential candidates for cell therapy. Using RT-PCR, we have examined families of genes that are associated with the development and/or survival of dopaminergic neurons. MSCs transcribe a variety of dopaminergic genes including patched and smoothened (components of the Shh receptor), Gli-1 (downstream mediator of Shh), and Otx-1, a gene associated with formation of the mesencephalon during development. Furthermore, Shh treatment elicits a 1.5-fold increase in DNA synthesis in cultured MSCs, suggesting the presence of a functional Shh receptor complex. We have also found that MSCs transcribe and translate Nurr-1, a nuclear receptor essential for the development of dopamine neurons. In addition, MSCs express a variety of growth factor receptors including the glycosyl-phosphatidylinositol-anchored ligand-binding subunit of the GDNF receptor, GFRalpha1, as well as fibroblast growth factor receptors one and four. The expression of genes that are associated with the development and survival of dopamine neurons suggests a potential role for these cells in the treatment of Parkinson's disease.  相似文献   

10.
A commerical cell sorter was used to obtain preparations of cells in various stages of granulocyte development from rabbit marrows stimulated by inflammatory response. Marrow cells were fractionated on density gradients of Ficoll/Hypaque and each fraction sorted using light scatter. Trial and error selection of appropriate gradient fractions and light scatter windows allowed sorting of early (blast cells, promyelocytes), intermediate (myelocytes, metamyelocytes) and late stage (band cells, polys) granulocytes with enhanced purity.  相似文献   

11.
Treatment of intact Swiss 3T3 cells with calyculin-A, an inhibitor of myosin light chain (MLC) phosphatase, induces tyrosine phosphorylation of p125(Fak) in a sharply concentration- and time-dependent manner. Maximal stimulation was 4.2 +/- 2.1-fold (n = 14). The stimulatory effect of calyculin-A was observed at low nanomolar concentrations (<10 nM); at higher concentrations (>10 nM) tyrosine phosphorylation of p125(Fak) was strikingly decreased. Calyculin-A induced tyrosine phosphorylation of p125(Fak) through a protein kinase C- and Ca(2+)-independent pathway. Exposure to either cytochalasin-D or latrunculin-A, which disrupt actin organization by different mechanisms, abolished tyrosine phosphorylation of p125(Fak) in response to calyculin-A. Treatment with high concentrations of platelet-derived growth factor (20 ng/ml) which also disrupt actin stress fibers, completely inhibited tyrosine phosphorylation of p125(Fak) in response to calyculin-A. This agent also induced tyrosine phosphorylation of the focal adhesion-associated proteins p130(Cas) and paxillin. These tyrosine phosphorylation events were associated with a striking increase in the assembly of focal adhesions. The Rho kinase (ROK) inhibitor HA1077 that blocked focal adhesion formation by bombesin, had no effect on the focal adhesion assembly induced by calyculin-A. Thus, calyculin-A induces transient focal adhesion assembly and tyrosine phosphorylation of p125(Fak), p130(Cas), and paxillin, acting downstream of ROK.  相似文献   

12.
Bone marrow stromal cells (MSCs) differentiation and proliferation are controlled by numerous growth factors and hormones. Continuous parathyroid hormone (PTH) treatment has been shown to decrease osteoblast differentiation, whereas pulsatile PTH increases osteoblast differentiation. However, the effects of PTH treatments on MSCs have not been investigated. This study showed continuous PTH treatment in the presence of dexamethasone (DEX) promoted osteogenic differentiation of rat MSCs in vitro, as demonstrated by increased alkaline phosphatase (ALP) activity, number of ALP expressing cells, and up-regulation of PTH receptor-1, ALP, and osteocalcin mRNA expressions. In contrast, pulsatile PTH treatment was found to suppress osteogenesis of rat MSCs, possibly by promoting the maintenance of undifferentiated cells. Additionally, the observed effects of PTH were strongly dependent on the presence of DEX. MSC proliferation however was not influenced by PTH independent of treatment regimen and presence or absence of DEX. Furthermore, our work raised the possibility that PTH treatment may modulate stem/progenitor cell activity within MSC cultures.  相似文献   

13.
Glutamyl aminopeptidase (GluAP, EC 3.4.11.7, ENPEP) is a 130-kDa homodimeric zinc metallopeptidase which specifically cleaves the N-terminal glutamate or aspartate residue of peptidic substrates such as cholecystokinin-8 or angiotensin (Ang) II, in vitro. We used a DNA microarray hybridization (Genechip Rat Expression Array 230A, Affymetrix Inc., Santa Clara, CA, USA) to demonstrate that GluAP was upregulated in osteogenic induced rat bone marrow stromal cells (BMSCs). To compare the expression of GluAP in the osteogenic differentiation and non-osteogenic differentiation of rat BMSCs in vitro, the cells were osteogenic induced in vitro. We also performed an MTT assay, alkaline phosphatase assay, alizarin red staining, and an immunohistochemical analysis to determine the osteogenic differentiation of BMSCs. The expression of GluAP was examined by real-time polymerase chain reaction (PCR). The real-time PCR results showed that GluAP was upregulated in osteogenic differentiated BMSCs in vitro, suggesting that GluAP may be correlated with the osteogenic differentiation of BMSCs.  相似文献   

14.
15.
16.
We previously reported that highly purified bone marrow-derived macrophage precursors can exert strong spontaneous cytotoxicity against YAC-1 tumor cells, Candida albicans, and protozoa of the genus Leishmania. In the present paper, evidence is shown that macrophage precursors in normal untreated mice are not confined to the bone marrow compartment but can also be found in the spleen. These organ-associated cells, which have the same buoyant density as large granular lymphocytes, have been positively sorted by means of an indirect rosetting technique employing the macrophage-specific monoclonal antibodies F4/80 and M143. The rosetting fractions represented an extremely homogeneous population of macrophage precursors characterized by high candidacidal and natural killer activity and by a strong proliferative response to the macrophage-specific colony-stimulating factor CSF-1. Spleen- and bone marrow-derived macrophage precursors differed in their target selectivity. In addition, the mature macrophages derived in vitro from these two precursor populations displayed striking differences in their candidacidal activity. The implications of these findings in relationship to heterogeneity in the macrophage differentiation line are discussed.  相似文献   

17.
During the last decade, increasing evidence suggested that bone marrow stromal cells (MSCs) have the potential to differentiate into neural lineages. Many studies have reported that MSCs showed morphological changes and expressed a limited number of neural proteins under experimental conditions. However, no proteomic studies on MSCs differentiated into Schwann cell-like cells have been reported. In this study, we isolated MSCs from adult Sprague-Dawley rat femur and tibia bone marrows and induced the cells in vitro under specific conditions. By using two-dimensional gel electrophoresis (2-DE), we compared the protein profiles of MSCs before and after induced differentiation. We obtained 792 protein spots in the protein profile by 2-DE, and found that 74 spots changed significantly before and after the differentiation using PDQuest software, with 43 up-regulated and 31 down-regulated. We analyzed these 74 spots by a matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) and by database searching, and found that they could be grouped into various classes, including cytoskeleton and structure proteins, growth factors, metabolic proteins, chaperone proteins, receptor proteins, cell cycle proteins, calcium binding proteins, and other proteins. These proteins also include neural and glial proteins, such as BDNF, CNTF and GFAP. The results may provide valuable proteomic information about the differentiation of MSCs into Schwann cell-like cells. Supported by National High-Tech Research and Development Program of China (Grant No. 2006AA02A128) and National Natural Science Foundation of China (Grant No. 30670667).  相似文献   

18.
19.
Highly purified primitive hemopoietic stem cells express BMP receptors but do not synthesize bone morphogenetic proteins (BMPs). However, exogenously added BMPs regulate their proliferation, differentiation, and survival. To further explore the mechanism by which BMPs might be involved in hemopoietic differentiation, we tested whether stromal cells from long-term culture (LTC) of normal human bone marrow produce BMPs, BMP receptors, and SMAD signaling molecules. Stromal cells were immunohistochemically characterized by the presence of lyzozyme, CD 31, factor VIII, CD 68, S100, alkaline phosphatase, and vimentin. Gene expression was analyzed by RT-PCR and the presence of BMP protein was confirmed by immunohistochemistry (IHC). The supportive role of the stromal cell layer in hemopoiesis in vitro was confirmed by a colony assay of clonogenic progenitors. Bone marrow stromal cells express mRNA and protein for BMP-3, -4, and -7 but not for BMP-2, -5, and -6 from the first to the eighth week of culture. Furthermore, stromal cells express the BMP type I receptors, activin-like kinase-3 (ALK-3), ALK-6, and the downstream transducers SMAD-1, -4, and -5. Thus, human bone marrow stromal cells synthesize BMPs, which might exert their effects on hemopoietic stem cells in a paracrine manner through specific BMP receptors.  相似文献   

20.
Summary The development of macrophages in culture from mouse bone marrow was followed for 14 days by light and electron microscopy, ultrastructural cytochemistry, and flow cytometric analysis. By 10 days greater than 97% of the cells in culture were mononuclear phagocytes, and by 12 days greater than 99% were identifiable as macrophages. Ultrastructurally, three subpopulations of mononuclear phagocytes were distinguished based on the appearance of cytoplasmic structures. Early in culture, cells containing large, membrane-bounded vesicles predominated. With increasing time in culture these cells were replaced to varying degrees first by cells that contained vesicles filled with relatively dense, osmiophilic material and, finally, by macrophages that contained granules of various sizes, shapes and staining densities. Cytochemical (peroxidase and acid phosphatase) and colloidal gold uptake studies at the ultrastructural level suggested that many, if not all, of these cytoplasmic structures arose by pinocytosis and subsequent fusion of pinocytic vesicles with lysosomes. Analysis of DNA content of propidium iodide-stained nuclei by flow cytometry, coupled with the examination of cells treated with colchicine to arrest mitosis in metaphase, suggested that cell cycling was a negligible contributor to heterogeneity within cultured populations. Thus, by waiting until 12–14 days after bone marrow cultures were initiated, with partial replenishment of the culture medium at 7 days, heterogeneity could be greatly reduced in cultured macrophage populations. Taking this fact into consideration could help to reduce the variability seen in functional studies of macrophage populations that are less homogeneous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号