首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new biotin-fluorescein conjugate with an ethylene diamine spacer was found to be the first fluorescent biotin derivative which truly mimicked d-biotin in terms of high affinity, fast association, and non-cooperative binding to avidin and streptavidin tetramers. These exceptional properties were attributed to the small size/length of the new ligand since all larger/longer biotin derivatives are known for their mutual steric hindrance and anti-cooperative binding in 4:1 complexes with avidin and streptavidin tetramers. Specific binding of the new biotin-fluorescein conjugate towards avidin and streptavidin was accompanied by 84-88% quenching of ligand fluorescence. In the accompanying study this effect was used for rapid estimation of avidin and streptavidin in a new 'single tube assay'. In the present study the strong quenching effect was utilized to accurately monitor stoichiometric titration of biotin-binding sites in samples with >/=200 pM avidin or streptavidin. The concentration was calculated from the consumption of fluorescent ligand up to the distinct breakpoint in the fluorescence titration profile which was marked by the abrupt appearance of strongly fluorescent ligands which were in excess. Due to this protocol the assay was not perturbed by background fluorescence or coloration in the unknown samples. The new fluorescence titration assay is particularly suited for quick checks on short notice because getting started only means to thaw an aliquot of a standardized stock solution of fluorescent ligand. No calibration is required for the individual assay and the ligand stock solution needs to be restandardized once per week (or once per year) when stored at -25 degrees C (or at -70 degrees C, respectively).  相似文献   

2.
The combination of various evanescent optical methods such as surface plasmon spectroscopy, waveguide mode spectroscopy and an integrated optical Mach-Zehnder-interferometer are used to characterize biotinylated self-assembled monolayers as well as the binding of streptavidin to these labels. The aim of designing a highly specific and sensitive, re-usable affinity sensor for antigens on the basis of an integrated optical Mach-Zehnder interferometer is based on a proper understanding of the characteristics of the entire binding matrix architecture. Therefore, a variety of biotin-derivatives immobilized in a monolayer are investigated with respect to their affinity to streptavidin and the possibility to remove the steptavidin layer specifically. The density of the streptavidin layer as well as the optical constants of the involved molecules are measured. Finally the integrated optical Mach-Zehnder interferometer is tested with respect to the sensitivity to an antigen-antibody binding reaction. An attempt to further increase the sensitivity by simultaneous detection of a fluorescence signal failed due to bleaching effects.  相似文献   

3.
The lipid affinity of plasma apolipoproteins is an important modulator of lipoprotein metabolism. Mutagenesis techniques have been widely used to modulate apolipoprotein lipid affinity for studying biological function, but the approach requires rapid and reliable lipid affinity assays to compare the mutants. Here, we describe a novel method that measures apolipoprotein binding to a standardized preparation of small unilamellar vesicles (SUVs) containing trace biotinylated and fluorescent phospholipids. After a 30 min incubation at various apolipoprotein concentrations, vesicle-bound protein is rapidly separated from free protein on columns of immobilized streptavidin in a 96-well microplate format. Vesicle-bound protein and lipid are eluted and measured in a fluorescence microplate reader for calculation of a dissociation constant and the maximum number of potential binding sites on the SUVs. Using human apolipoprotein A-I (apoA-I), apoA-IV, and mutants of each, we show that the assay generates binding constants that are comparable to other methods and is reproducible across time and apolipoprotein preparations. The assay is easy to perform and can measure triplicate binding parameters for up to 10 separate apolipoproteins in 3.5 h, consuming only 120 microg of apolipoprotein in total. The benefits and potential drawbacks of the assay are discussed.  相似文献   

4.
The spectroscopic characteristics (absorption, emission, and fluorescence lifetime) of 13 commercially available red-absorbing fluorescent dyes were studied under a variety of conditions. The dyes included in this study are Alexa647, ATTO655, ATTO680, Bodipy630/650, Cy5, Cy5.5, DiD, DY-630, DY-635, DY-640, DY-650, DY-655, and EVOblue30. The thorough characterization of this class of dyes will facilitate selection of the appropriate red-absorbing fluorescent labels for applications in fluorescence assays. The influences of polarity, viscosity, and the addition of detergent (Tween20) on the spectroscopic properties were investigated, and fluorescence correlation spectroscopy (FCS) was utilized to assess the photophysical properties of the dyes under high excitation conditions. The dyes can be classified into groups based on the results presented. For example, while the fluorescence quantum yield of ATTO655, ATTO680, and EVOblue30 is primarily controlled by the polarity of the surrounding medium, more hydrophobic and structurally flexible dyes of the DY-family are strongly influenced by the viscosity of the medium and the addition of detergents. Covalent binding of the dyes to biotin and subsequent addition of streptavidin results in reversible fluorescence quenching or changes in the relaxation time of other photophysical processes of some dyes, most likely due to interactions with tryptophan residues in the streptavin binding site.  相似文献   

5.
BACKGROUND: Particulate surfaces such as beads are routinely used as platforms for molecular assembly for fundamental and practical applications in flow cytometry. Molecular assembly is transduced as the direct analysis of fluorescence, or as a result of fluorescence resonance energy transfer. Binding of fluorescent ligands to beads sometimes alters their emission yield relative to the unbound ligands. Characterizing the physical basis of factors that regulate the fluorescence yield of bound fluorophores (on beads) is a necessary step toward their rational use as mediators of numerous fluorescence based applications. METHODS: We have examined the binding between two biotinylated and fluoresceinated beta-endorphin peptides and commercial streptavidin beads using flow cytometric analysis. We have analyzed the assembly between a specific monoclonal antibody and an endorphin peptide in solution using resonance energy transfer and compared the results on beads in flow cytometry using steady-state and time-resolved fluorescence. RESULTS: We have defined conditions for binding biotinylated and fluoresceinated endorphin peptides to beads. These measurements suggest that the peptide structure can influence both the intensity of fluorescence and the mode of peptide binding on the bead surface. We have defined conditions for binding antibody to the bead using biotinylated protein A. We compared and contrasted the interactions between the fluoresceinated endorphin peptide and the rhodamine- labeled antibody. In solution we measure a K(d) of <38 nM by resonance energy transfer and on beads 22 nM. DISCUSSION: Some issues important to the modular assembly of a fluorescence resonance energy transfer (FRET) based sensing scheme have been resolved. The affinity of peptides used herein is a function of their solubility in water, and the emission intensity of the bound species depends on the separation distance between the fluorescein and the biotin moiety. This is due to the quasi-specific quenching interaction between the fluorescein and a proximal binding pocket of streptavidin. Detection of antibodies in solution and on beads either by FRET or capture of fluorescent ligands by dark antibodies subsequently enables the determination of K(d) values, which indicate agreement between solution and flow cytometric determinations.  相似文献   

6.
An assay based on fluorescence resonance energy transfer (FRET) has been developed to screen for ubiquitination inhibitors. The assay measures the transfer of ubiquitin from Ubc4 to HECT protein Rsc 1083. Secondary reagents (streptavidin and antibody to glutathione-S-transferase [GST]), pre-labeled with fluorophores (europium chelate, Eu(3+), and allophycocyanin [APC]), are noncovalently attached via tags (biotin and GST) to the reactants (ubiquitin and Rsc). When Rsc is ubiquitinated, Eu(3+) and APC are brought into close proximity, permitting energy transfer between the two fluorescent labels. FRET was measured as time-resolved fluorescence at the emission wavelength of APC, almost entirely free of nonspecific fluorescence from Eu(3+) and APC. The FRET assay generated a lower ratio of signal to background (8 vs. 31) than an assay for the same ubiquitination step that was developed as a dissociation-enhanced lanthanide fluoroimmunoassay (DELFIA). However, compared to the DELFIA method, use of FRET resulted in higher precision (4% vs. 11% intraplate coefficient of variation). Quenching of fluorescence was minimal when compounds were screened at 10 microg/ml using FRET. Employing a quick and simple homogeneous method, the FRET assay for ubiquitin transfer is ideally suited for high throughput screening.  相似文献   

7.
Microarray technology has brought a paradigmatic change in bioanalytics. However, highly sensitive and accurate assays are still needed for a real breakthrough. We present a simple and generic approach for fluorescent signal amplification with fluorescent microparticle labels. The assay principle was demonstrated using a reverse array model consisting of spots of bovine serum albumin with a small fraction of the proteins biotinylated. Specific binding of streptavidin coated fluorescent microparticles to the spots was promoted by applying a controlled continuous microparticle flow. The surface bound beads were visualized and quantified with confocal microscopy images. Comparison with standard fluorescent and flow discrimination assays has revealed several advantages of our approach. First, non-specific particle binding could be reduced to less than 1 particle/spot making therefore the visualization of single biomolecular bonds possible. Second, the amplification scheme presented here is generic and can be applied to any fluorescent microarray. Furthermore, this assay makes use of a biotin-streptavidin linkage and can therefore be applied to all kind of assays. Finally, single fluorescent microbeads can be easily visualized with standard optical equipments, so that no high performance equipment is required.  相似文献   

8.
The control of cell death is an intricate process involving a multitude of intracellular modulators. Among these molecules, the caspases have a central role and have become an interesting group of enzymes in the current pharmaceutical industry. We have developed a novel dual-step fluorescence energy transfer-based separation-free assay method for the primary screening of caspase-3 inhibitors in vitro. This method relies on fluorescent europium(III)-chelate-doped nanoparticle donors coated with streptavidin in conjunction with a dual-labeled (N-terminal Alexa Fluor 680 fluorescent acceptor and C-terminal BlackBerry Quencher 650) caspase-3-specific peptide substrate modified with a biotinyl moiety. In the assay, the nanoparticle donor excites the fluorescent acceptor, whose emission is monitored with time-resolved measurements. The intensity of the acceptor reflects the activity of the enzyme because the intensity is controlled by the proximity of the quencher. Owing to the dual-step fluorescence resonance energy transfer, this method enables a sensitized fluorescence signal directly proportional to the extent of enzymatic activity with relatively background fluorescence-free measurements in the event of complete enzyme inhibition. The generic nanoparticle donors further promote versatility and cost-efficiency of the method. The performance evaluated as the inhibitor (Z-DEVD-FMK) dose-response curve (IC(50) value of approximately 12 nM) was in good agreement with that of the recent methods found in literature. This assay serves as a model application proving the feasibility of the europium-chelate-doped nanoparticle labels in a homogeneous assay for proteolytic activity.  相似文献   

9.
Compounds that stabilize the G-quadruplexes formed by human telomeres can inhibit the telomerase activity and are potential cancer therapies. We have developed an assay for the screening of compounds with high affinity for human telomeric G-quadruplexes (HTG). The assay uses a thiazole orange fluorescent reporter molecule conjugated to the aminoglycoside, neomycin, as a probe in a fluorescence displacement assay. The conjugation of the planar base stacking thiazole orange with the groove binding neomycin results in high affinity probe that can determine the relative binding affinity of high affinity HTG binding drugs in a high throughput format. The robust assay is applicable for the determination of the binding affinity of HTG in the presence of K+ or Na+.  相似文献   

10.
The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (strept)avidin to improve the existing applications. Even so, (strept)avidin greatly favours its natural ligand, biotin. Here we engineered the biotin-binding pocket of avidin with a single point mutation S16C and thus introduced a chemically active thiol group, which could be covalently coupled with thiol-reactive molecules. This approach was applied to the previously reported bivalent dual chain avidin by modifying one binding site while preserving the other one intact. Maleimide was then coupled to the modified binding site resulting in a decrease in biotin affinity. Furthermore, we showed that this thiol could be covalently coupled to other maleimide derivatives, for instance fluorescent labels, allowing intratetrameric FRET. The bifunctional avidins described here provide improved and novel tools for applications such as the biofunctionalization of surfaces.  相似文献   

11.
In this paper, we establish a novel fluorescence-sensing system for the detection of biotin based on the interaction between DNA and graphene oxide and on protection of the terminal of the biotinylated single-stranded DNA fluorescent probe by streptavidin. In this system, streptavidin binds to the biotinylated DNA, which protects the DNA from hydrolysis by exonuclease I. The streptavidin–DNA conjugate is then adsorbed to the graphene oxide resulting in the fluorescence being quenched. Upon the addition of free biotin, it competes with the labeled biotin for the binding sites of streptavidin and then the exonuclease I digests the unbound DNA probe from the 3′ to the 5′ terminal, releasing the fluorophore from the DNA. Because of the weak affinity between the fluorophore and graphene oxide, the fluorescence is recovered. Under optimal conditions, the fluorescence intensity is proportional to the concentration of biotin in the concentration range of 0.5–20 nmol/L. The detection limit for biotin is 0.44 nmol/L. The proposed fluorescence-sensing system was applied to the determination of biotin in some real samples with satisfactory reproducibility and accuracy. This work could provide a common platform for detecting small biomolecules based on protein–small molecule ligand binding.  相似文献   

12.
Fluorescence immunoassays are widely used in life science research, medical diagnostics, and environmental monitoring due to the intrinsically high specificity, simplicity, and versatility of immunoassays, as well as the availability of a large variety of fluorescent labeling molecules. However, the sensitivity needs to be improved to meet the ever-increasing demand in the new proteomics era. Here, we report a simple method of attaching multiple fluorescent labels on an antibody with a dye/DNA conjugate to increase the immunoassay sensitivity. In the work, mouse IgG adsorbed on the surface of a 96-well plate was detected by its immunoreaction with biotinylated goat anti-mouse antibody. A 30 base pair double-stranded oligonucleotide terminated with biotin was attached to the antibody through the biotin/streptavidin/biotin interaction. Multiple labeling of the antibody was achieved after a fluorescent DNA probe was added into the solution and bound to the oligonucleotide at high ratios. By comparison with fluorescein-labeled streptavidin, the assay with the dye/DNA label produced up to 10-fold increase in fluorescence intensity, and consequently about 10-fold lower detection limit. The multiple labeling method uses readily available reagents, and is simple to implement. Further sensitivity improvement can be obtained by using longer DNAs for antibody labeling, which can incorporate more fluorescent dyes on each DNA.  相似文献   

13.
Here, we describe novel puromycin derivatives conjugated with iminobiotin and a fluorescent dye that can be linked covalently to the C-terminus of full-length proteins during cell-free translation. The iminobiotin-labeled proteins can be highly purified by affinity purification with streptavidin beads. We confirmed that the purified fluorescence-labeled proteins are useful for quantitative protein-protein interaction analysis based on fluorescence cross-correlation spectroscopy (FCCS). The apparent dissociation constants of model protein pairs such as proto-oncogenes c-Fos/c-Jun and archetypes of the family of Ca2+-modulated calmodulin/related binding proteins were in accordance with the reported values. Further, detailed analysis of the interactions of the components of polycomb group complex, Bmi1, M33, Ring1A and RYBP, was successfully conducted by means of interaction assay for all combinatorial pairs. The results indicate that FCCS analysis with puromycin-based labeling and purification of proteins is effective and convenient for in vitro protein-protein interaction assay, and the method should contribute to a better understanding of protein functions by using the resource of available nucleotide sequences.  相似文献   

14.
The Strep tag is a peptide sequence that is able to mimic biotin's ability to bind to streptavidin. Sequences of Strep tags from 0 to 5 have been appended to the N-terminus of a model protein, the Stefin A Quadruple Mutant (SQM) peptide aptamer scaffold, and the recombinant fusion proteins expressed. The affinities of the proteins for streptavidin have been assessed as a function of the number of tags inserted using a variety of labelled and label-free bioanalytical and surface based methods (Western blots, microarray assays and surface plasmon resonance spectroscopy). The binding affinity increases with the number of tags across all assays, reaching nanomolar levels with 5 inserts, an observation assigned to a progressive increase in the probability of a binding interaction occurring. In addition a novel interfacial FRET based assay has been developed for generic Strep tag interactions, which utilises a conventional microarray scanner and bypasses the requirement for expensive lifetime imaging equipment. By labelling both the tagged StrepX-SQM(2) and streptavidin targets, the conjugate is primed for label-free FRET based displacement assays.  相似文献   

15.
The development of a single-step, separation-free method for measurement of low concentrations of fatty acid using a surface plasmon resonance-enhanced fluorescence competition assay with a surface-bound antibody is described. The assay behavior was unexpectedly complex. A nonlinear coverage-dependent self-quenching of emission from surface-bound fluorescent label was deduced from the response kinetics and attributed to a surface plasmon-mediated energy transfer between adsorbed fluorophores, modified by the effects of plasmon interference. Principles of assay design to avoid complications from such effects are discussed. An anti-fatty acid mouse monoclonal antibody reacting to the alkyl chain was prepared and supported on a gold chip at a spacing appropriate for surface-plasmon field-enhanced fluorescence spectroscopy (SPEFS), by applying successively a self-assembled biotinylated monolayer, then streptavidin, then biotinylated protein A, and then the antibody, which was crosslinked to the protein A. Synthesis of a fluorescently (Cy5) tagged C-11 fatty acid is reported. SPEFS was used to follow the kinetics of the binding of the labeled fatty acid to the antibody, and to implement a competition assay with free fatty acid (undecanoic acid), sensitive at the 1 μM scale, a sensitivity limit caused by the low affinity of antibodies for free fatty acids, rather than the SPEFS technique itself. Free fatty acid concentration in human serum is in the range 0.1-1 mM, suggesting that this measurement approach could be applied in a clinical diagnostic context. Finally, a predictive, theoretical model of fatty acid binding was developed that accounted for the observed “overshoot” kinetics.  相似文献   

16.
Nanoparticles as Fluorescence Labels: Is Size All that Matters?   总被引:1,自引:0,他引:1  
Fluorescent labels are often used in bioassays as a means to detect and characterize ligand-receptor binding. This is due in part to the inherently high sensitivity of fluorescence-based technology and the relative accessibility of the technique. There is often little concern raised as to whether or not the fluorescent label itself affects the ligand-receptor binding dynamics and equilibrium. This may be particularly important when considering nanoparticle labels. In this study, we examine the affects of nanoparticle (quantum dots and polymer nanospheres) fluorescent labels on the streptavidin-biotin binding system. Since the nanoparticle labels are larger than the species they tag, one could anticipate significant perturbation of the binding equilibrium. We demonstrate, using fluorescence cross-correlation spectroscopy, that although the binding equilibria do change, the relative changes are largely predictable. We suggest that the nanoparticles’ mesoscopic size and surface tension effects can be used to explain changes in streptavidin-biotin binding.  相似文献   

17.
The detection of protein-protein binding on microarrays using the fluorescence lifetime as a dynamic analytical parameter was investigated in a model system. The assay is based on F?rster resonance energy transfer (FRET) and carried out with biotinylated Bovine Serum Albumin and streptavidin, labeled with the commonly used microarray dyes Alexa 555 and Alexa 647, respectively. This efficient FRET donor/acceptor pair was employed in a competitive assay format on three different microarray surfaces. The fluorescence was excited by 200ps laser pulses from a mode-locked and cavity-dumped argon-ion laser, adapted to an intensified CCD camera as detection unit allowing time resolution with subnanosecond precision. Lifetime maps were recorded according to the Rapid Lifetime Determination (RLD) scheme. Interaction between the proteins could clearly be detected on all formats and resulted in almost complete quenching on CEL Epoxy surfaces upon addition of excess streptavidin labeled the FRET acceptor dye. In this case, the fluorescence lifetimes dropped by 90%, whereas on ARChip Epoxy and ARChip Gel the reduction was 54% and 47%, respectively. Good linearity of the quenching curve was obtained in all cases. The method is applicable to all types of protein interaction analysis on microarrays, particularly in cases where evaluation of fluorescence intensity is prone to erroneous results and a more robust parameter is required.  相似文献   

18.
Biotin binding reduces the tryptophan fluorescence emissions of streptavidin by 39%, blue shifts the emission peak from 333 to 329 nm, and reduces the bandwidth at half height from 53 to 46 nm. The biotin-induced emission difference spectrum resembles that of a moderately polar tryptophan. Streptavidin fluorescence can be described by two lifetime classes: 2.6 nsec (34%) and 1.3 nsec (66%). With biotin bound, lifetimes are 1.3 nsec (26%) and 0.8 nsec (74%). Biotin binding reduces the average fluorescence lifetime from 1.54 to 0.88 nsec. Biotin does not quench the fluorescence of indoles. The fluorescence changes are consistent with biotin binding causing a conformational change which moves tryptophans into proximity to portions of streptavidin which reduce the quantum yield and lifetimes. Fluorescence quenching by acrylamide revealed two classes of fluorophores. Analysis indicated a shielded component comprising 20–28% of the initial fluorescence with (KSV+V)0.55 M–1. The more accessible component has a predominance of static quenching. Measurements of fluorescence lifetimes at different acrylamide concentrations confirmed the strong static quenching. Since static quenching could be due to acrylamide binding to streptavidin, a dye displacement assay for acrylamide binding was constructed. Acrylamide does bind to streptavidin (Ka=5 M–1), and probably binds within the biotin-binding site. In the absence of biotin, none of streptavidin's fluorescence is particularly accessible to iodide. In the presence of biotin, iodide neither quenches fluorescence nor alters emission spectra, and acrylamide access is dramatically reduced. We propose that the three tryptophans which always line the biotin site are sufficiently close to the surface of the binding site to be quenched by bound acrylamide. These tryptophans are shielded from iodide, most probably due to steric or ionic hindrances against diffusion into the binding site. Most of the shielding conferred by biotin binding can be attributed to the direct shielding of these residues and of a fourth tryptophan which moves into the binding site when biotin binds, as shown by X-ray studies (Weberet al., 1989).  相似文献   

19.
The binding of 4',6-diamidino-2-phenylindole (DAPI) to double-stranded GC polymers either in the alternating or in homopolymer sequence was investigated using fluorescence techniques. We employed fluctuation correlation spectroscopy, which measures the diffusion coefficient of fluorescent particles, to demonstrate that the fluorescence was originating from relatively slowly diffusing entities. These entities display a very large heterogeneity of diffusing coefficients, indicating that molecular aggregation is extensive in our samples. We used frequency domain fluorometry to characterize the fluorescence lifetime of the species, while varying the GC polymer-dye coverage systematically. At very low coverage we observed a relatively bright fluorescent component with a lifetime value of approximately 4 ns. The stoichiometry of binding of this bright species was such that it can only arise from rare molecular structures, either unusual loops or large molecular aggregates. The amount and characteristics of this bright fluorescent component were different between the homo and the alternating polymer, indicating that the difference in sequence of the two polymers is responsible for the different aggregates which are then detected in the fluorescence experiment. At large GC polymer coverage we observed a relatively wide distribution of fluorescent species with short lifetime values, in the range between 0.12 and 0.2 ns. Given the stoichiometry of binding of this fluorescent component, we concluded that it could arise either from intercalative and/or non-specific binding to the DNA double-stranded molecules. We comment on the origin of the rare but brightly fluorescent binding sites and discuss the potential to detect such unusual DNA structures.  相似文献   

20.
Here, we describe novel puromycin derivatives conjugated with iminobiotin and a fluorescent dye that can be linked covalently to the C-terminus of full-length proteins during cell-free translation. The iminobiotin-labeled proteins can be highly purified by affinity purification with streptavidin beads. We confirmed that the purified fluorescence-labeled proteins are useful for quantitative protein–protein interaction analysis based on fluorescence cross-correlation spectroscopy (FCCS). The apparent dissociation constants of model protein pairs such as proto-oncogenes c-Fos/c-Jun and archetypes of the family of Ca2+-modulated calmodulin/related binding proteins were in accordance with the reported values. Further, detailed analysis of the interactions of the components of polycomb group complex, Bmi1, M33, Ring1A and RYBP, was successfully conducted by means of interaction assay for all combinatorial pairs. The results indicate that FCCS analysis with puromycin-based labeling and purification of proteins is effective and convenient for in vitro protein–protein interaction assay, and the method should contribute to a better understanding of protein functions by using the resource of available nucleotide sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号