首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
DNA microarray analysis showed that yfiD, yggB, and yggE genes were up-regulated when superoxide dismutase (SOD)-deficient Escherichia coli IM303 (I4) was cultivated under the oxidative stress generated by photoexcited TiO(2), and pYFD, pYGB, and pYGE were constructed by inserting the respective genes into a pUC 19 vector. The content of reactive oxygen species (ROS) in IM303 (I4) cells carrying pYGE was reduced to 31% of ROS content in the control cells with pUC 19. In the culture of wild-type strain, E. coli MM294, in the medium with paraquat (10 micromol/l), maximum specific growth rate of the cells with pYGE was about five times higher than that of the control cells, with a decreased ROS content in the former cells. The introduction of pYGE also suppressed the occurrence of the cells with altered amino acid requirement in the culture of MM294 cells with paraquat.  相似文献   

2.
DNA microarray analysis showed that yfiD, yggB, and yggE genes were up-regulated when superoxide dismutase (SOD)-deficient Escherichia coli IM303 (I4) was cultivated under the oxidative stress generated by photoexcited TiO2, and pYFD, pYGB, and pYGE were constructed by inserting the respective genes into a pUC 19 vector. The content of reactive oxygen species (ROS) in IM303 (I4) cells carrying pYGE was reduced to 31% of ROS content in the control cells with pUC 19. In the culture of wild-type strain, E. coli MM294, in the medium with paraquat (10 μmol/l), maximum specific growth rate of the cells with pYGE was about five times higher than that of the control cells, with a decreased ROS content in the former cells. The introduction of pYGE also suppressed the occurrence of the cells with altered amino acid requirement in the culture of MM294 cells with paraquat.  相似文献   

3.
Dehydroquinate synthase has been purified 9000-fold from Escherichia coli K-12 (strain MM294). The synthase is encoded by the aroB gene, which is carried by plasmid pLC29-47 from the Carbon-Clarke library. Construction of an appropriate host bearing pLC29-47 results in a strain that produces 20 times more enzyme than strain MM294. Subcloning of the aroB gene behind a tac promoter results in E. coli transformants that produce 1000 times more enzyme than MM294: the synthase constitutes 5% of the soluble protein of the cell. A laborious isolation from 50 g of wild-type E. coli cells yields 80 micrograms of impure enzyme, whereas 50 g of cells containing the subcloned gene yields 150 mg of homogeneous enzyme in a two-column purification. Dehydroquinate synthase is a monomeric protein of Mr 40 000-44 000. The chromosomal enzyme from E. coli K-12, the cloned enzyme encoded by the plasmid pLC29-47, and the subcloned inducible enzyme encoded by pJB14 all comigrate on polyacrylamide gel electrophoresis under denaturing conditions.  相似文献   

4.
Ascorbic acid is present as a primary antioxidant in plasma and within cells, protecting both cytosolic and membrane components of cells from oxidative damage. The effects of intracellular ascorbic acid on F(2)-isoprostanes (biomarkers of oxidative stress) and monocyte chemoattractant protein-1 (marker of inflammatory responses) production in monocytic THP-1 cells were investigated under conditions of 2,2'-Azobis(2-methylpropionamidine)dihydrochloride (AAPH) induced oxidative stress. Cells cultured under normal conditions have extremely low ascorbate levels and the intracellular ascorbate can be augmented significantly by adding ascorbate to the culture medium. While AAPH treatment reduced cell viability, increased F(2)-isoprostanes and MCP-1 production, the presence of intracellular ascorbic acid maintained high cell viability and attenuated both F(2)-isoprostanes and MCP-1 production. Measurement of intracellular ascorbic acid and its oxidised products showed that intracellular ASC was oxidised to a significantly greater extent during AAPH treatment and may be utilised to protect the cells under conditions of oxidative stress. This study demonstrates the importance of intracellular ascorbate, which may be lacking under normal cell culture conditions, under conditions of increased oxidative stress.  相似文献   

5.
A lot of data has shown recently that survival of mammalian cells is under a control of growth factors and autocrine survival factors (AF). We studied the influence of AF deficit on survival, intracellular ATP content, and transmembrane potential of mitochondria of IL-2-dependent CTLL-2 cells under oxidative stress. CTLL-2 cells cultivated under deficit of AF have been shown to be more susceptible to oxidative injury in comparison with the cells cultivated without deficit of AF (control); they died at smaller concentrations of H2O2 than control cells did. The ATP content in CTLL-2 cells was decreased under AF deficit conditions even without any stress and treatment of the cells by hydrogen peroxide resulted in additional large decrease of it. ATP depression was accompanied by disruption of cell membrane (blebbing) and drop of mitochondrial potential. Cell death under oxidative stress in the presence of AF deficit has been shown to proceed by both apoptosis and necrosis.  相似文献   

6.
The pyridoxal 5′-phosphate dependent-enzyme Dopa decarboxylase, responsible for the irreversible conversion of l-Dopa to dopamine, is an attractive drug target. The contribution of the pyridoxal-Lys303 to the catalytic mechanisms of decarboxylation and oxidative deamination is analyzed. The K303A variant binds the coenzyme with a 100-fold decreased apparent equilibrium binding affinity with respect to the wild-type enzyme. Unlike the wild-type, K303A in the presence of l-Dopa displays a parallel progress course of formation of both dopamine and 3,4-dihydroxyphenylacetaldehyde (plus ammonia) with a burst followed by a linear phase. Moreover, the finding that the catalytic efficiencies of decarboxylation and of oxidative deamination display a decrease of 1500- and 17-fold, respectively, with respect to the wild-type, is indicative of a different impact of Lys303 mutation on these reactions. Kinetic analyses reveal that Lys303 is involved in external aldimine formation and hydrolysis as well as in product release which affects the rate-determining step of decarboxylation.  相似文献   

7.
Conlon KA  Zharkov DO  Berrios M 《DNA Repair》2003,2(12):1337-1352
OGG1 is a major DNA glycosylase in mammalian cells, participating in the repair of 7,8-dihydro-8-oxoguanine (8-oxoguanine, 8-oxoG), the most abundant known DNA lesion induced by endogenous reactive oxygen species in aerobic organisms. 8-oxoG is therefore often used as a marker for oxidative DNA damage. In this study, polyclonal and monoclonal antibodies were raised against the purified wild-type recombinant murine 8-oxoG DNA glycosylase (mOGG1) protein and their specificity against the native enzyme and the SDS-denatured mOGG1 polypeptide were characterized. Specific antibodies directed against the purified wild-type recombinant mOGG1 were used to localize in situ this DNA repair enzyme in established cell lines (HeLa cells, NIH3T3 fibroblasts) as well as in primary culture mouse embryo fibroblasts growing under either normal or oxidative stress conditions. Results from these studies showed that mOGG1 is localized to the nucleus and the cytoplasm of mammalian cells in culture. However, mOGG1 levels increase and primarily redistribute to the nucleus and its peripheral cytoplasm in cells exposed to oxidative stress conditions. Immunofluorescent localization results reported in this study suggest that susceptibility to oxidative DNA damage varies among mammalian tissue culture cells and that mOGG1 appears to redistribute once mOGG1 cell copy number increases in response to oxidative DNA damage.  相似文献   

8.
Nanoparticulate titanium dioxide (TiO(2)) is highly photoactive, and its function as a photocatalyst drives much of the application demand for TiO(2). Because TiO(2) generates reactive oxygen species (ROS) when exposed to ultraviolet radiation (UVR), nanoparticulate TiO(2) has been used in antibacterial coatings and wastewater disinfection, and has been investigated as an anti-cancer agent. Oxidative stress mediated by photoactive TiO(2) is the likely mechanism of its toxicity, and experiments demonstrating cytotoxicity of TiO(2) have used exposure to strong artificial sources of ultraviolet radiation (UVR). In vivo tests of TiO(2) toxicity with aquatic organisms have typically shown low toxicity, and results across studies have been variable. No work has demonstrated that photoactivity causes environmental toxicity of TiO(2) under natural levels of UVR. Here we show that relatively low levels of ultraviolet light, consistent with those found in nature, can induce toxicity of TiO(2) nanoparticles to marine phytoplankton, the most important primary producers on Earth. No effect of TiO(2) on phytoplankton was found in treatments where UV light was blocked. Under low intensity UVR, ROS in seawater increased with increasing nano-TiO(2) concentration. These increases may lead to increased overall oxidative stress in seawater contaminated by TiO(2), and cause decreased resiliency of marine ecosystems. Phototoxicity must be considered when evaluating environmental impacts of nanomaterials, many of which are photoactive.  相似文献   

9.
THP-1 cell-derived foam cells were exposed to oxidative stress through combined treatment with acetylated LDL (acLDL) and copper ions (Cu2+). The foam cells showed caspase-dependent apoptotic changes on exposure to oxidative stress for 6 h, and necrotic changes with the leakage of LDH after 24 h. KY-455, an anti-oxidative ACAT inhibitor, and ascorbic acid (VC) but not YM-750, an ACAT inhibitor, prevented apoptotic and necrotic changes. These preventive effects of KY-455 and VC were accompanied by the inhibition of lipid peroxidation in culture medium containing acLDL and Cu2+, suggesting the involvement of oxidized acLDL in apoptosis and necrosis. Foam cells accumulated esterified cholesterol (EC) for 24 h in the presence of acLDL without Cu2+, which was suppressed by KY-455 and YM-750. Foam cells showed necrotic changes and died in the presence of acLDL and Cu2+. KY-455 but not YM-750 prevented cell death and reduced the amount of EC accumulated. The foam cells treated with VC further accumulated EC without necrotic changes for 24 h even in the presence of acLDL and Cu2+. YM-750 as well as KY-455 inhibited lipid accumulation when co-incubated with VC in foam cells exposed to oxidative stress. It is concluded that an anti-oxidative ACAT inhibitor or the combination of an antioxidant and an ACAT inhibitor protects foam cells from oxidative stress and effectively reduces cholesterol levels, which would be a promising approach in anti-atherosclerotic therapy.  相似文献   

10.
11.
Upon encountering oxidative stress, proteins are oxidized extensively by highly reactive and toxic reactive oxidative species, and these damaged, oxidized proteins need to be degraded rapidly and effectively. There are two major proteolytic systems for bulk degradation in eukaryotes, the proteasome and vacuolar autophagy. In mammalian cells, the 20S proteasome and a specific type of vacuolar autophagy, chaperone-mediated autophagy, are involved in the degradation of oxidized proteins in mild oxidative stress. However, little is known about how cells remove oxidized proteins when under severe oxidative stress. Using two macroautophagy markers, monodansylcadaverine and green fluorescent protein-AtATG8e, we here show that application of hydrogen peroxide or the reactive oxidative species inducer methyl viologen can induce macroautophagy in Arabidopsis (Arabidopsis thaliana) plants. Macroautophagy-defective RNAi-AtATG18a transgenic plants are more sensitive to methyl viologen treatment than wild-type plants and accumulate a higher level of oxidized proteins due to a lower degradation rate. In the presence of a vacuolar H(+)-ATPase inhibitor, concanamycin A, oxidized proteins were detected in the vacuole of wild-type root cells but not RNAi-AtATG18a root cells. Together, our results indicate that autophagy is involved in degrading oxidized proteins under oxidative stress conditions in Arabidopsis.  相似文献   

12.
To evaluate the physiological potential of the defense system against hydroperoxidation of membrane-lipid components caused by environmental stresses in higher plants, we generated transgenic tobacco plants expressing a glutathione peroxidase (GPX)-like protein in the cytosol (TcGPX) or chloroplasts (TpGPX). The activities toward alpha-linolenic acid hydroperoxide in TcGPX and TpGPX plants were 47.5-75.3 and 32.7-42.1 nM min(-1) mg(-1) protein, respectively, while no activity was detected in wild-type plants. The transgenic plants showed increased tolerance to oxidative stress caused by application of methylviologen (MV: 50 microM) under moderate light intensity (200 micro E m(-2) sec(-1)), chilling stress under high light intensity (4 degrees C, 1000 microE m(-2) sec(-1)), or salt stress (250 mM NaCl). Under these stresses, the lipid hydroperoxidation (the production of malondialdehyde (MDA)) of the leaves of TcGPX and TpGPX plants was clearly suppressed compared with that of wild-type plants. Furthermore, the capacity of the photosynthetic and antioxidative systems in the transgenic plants remained higher than those of wild-type plants under chilling or salt stress. These results clearly indicate that a high level of GPX-like protein in tobacco plants functions to remove unsaturated fatty acid hydroperoxides generated in cellular membranes under stress conditions, leading to the maintenance of membrane integrity and increased tolerance to oxidative stress caused by various stress conditions.  相似文献   

13.
14.
Alpha synuclein protein may play an important role in familial and sporadic Parkinson's disease pathology. We have induced G209A mutant or wild-type alpha-synuclein expression in stable HEK293 cell models to determine if this influences markers of oxidative stress and damage under normal conditions or in the presence of dopamine or paraquat. Induced wild-type or mutant alpha-synuclein expression alone had no effect upon levels of oxidative stress or damage, as measured by glutathione levels or aconitase activity. Both wild-type and mutant alpha-synuclein expression decreased the oxidative damage induced by paraquat, although the protection was less marked with mutant alpha-synuclein expression. This suggests that alpha-synuclein expression may either have anti-oxidant properties or may upregulate cellular antioxidant levels, a function that was diminished by the G209A mutation. However, mutant but not wild-type alpha-synuclein expression specifically enhanced dopamine associated oxidative damage. Non-expressing cells treated with reserpine to inhibit the vesicular monoamine compartmentalisation produced similar results. However, consistent with the hypothesis that mutant alpha-synuclein disrupts vesicular dopamine compartmentalization, this effect was diminished in cells expressing mutant alpha-synuclein. This may result in increased dopamine metabolism and cause selective oxidative damage to dopaminergic cells.  相似文献   

15.
16.
Abstract: We have previously shown, using qualitative approaches, that oligodendroglial precursors are more readily damaged by free radicals than are astrocytes. In the present investigation we quantified the oxidative stress experienced by the cells using oxidation of dichlorofluorescin diacetate to dichlorofluorescein as a measure of oxidative stress; furthermore, we have delineated the physiological bases of the difference in susceptibility to oxidative stress found between oligodendroglial precursors and astrocytes. We demonstrate that (a) oligodendroglial precursors under normal culture conditions are under six times as much oxidative stress as astrocytes, (b) oxidative stress experienced by oligodendroglial precursors increases sixfold when exposed to 140 mW/m2 of blue light, whereas astrocytic oxidative stress only doubles, (c) astrocytes have a three times higher concentration of GSH than oligodendroglial precursors, (d) oligodendroglial precursors have >20 times higher iron content than do astrocytes, and (e) oxidative stress in oligodendroglial precursors can be prevented either by chelating intracellular free iron or by raising intracellular GSH levels to astrocytic values. We conclude that GSH plays a central role in preventing free radical-mediated damage in glia.  相似文献   

17.
18.
The oxidative stress in eye lens which occurs during inflammation and under chronic hyperglycemia has been already indicated in the pathogenesis of cataract disorders. The aim of this study was to examine structural and functional properties of R12C mutant αA-Crystallin (αA-Cry) in the presence of hydrogen peroxide. The study was done using different spectroscopic techniques and gel mobility shift assay. According to results of our study, H2O2 oxidation strongly compromises the chaperone function of the R12C mutant but not of wild-type αA-Cry. Also, it affects the structural properties of both wild-type and mutant proteins, albeit to different degree. The H2O2 exposure promotes extensive disulfide mediated oligomerization of the R12C mutant but not of the wild-type as revealed by gel mobility shift assay and dynamic light scattering. Moreover, in the presence of hydrogen peroxide, the mutant protein demonstrates severe conformational and protease instability and increased amyloidogenic propensity. The obtained results suggest that incubation of R12C mutant recombinant αA-Cry with hydrogen peroxide accelerates the molecular events which have been already implicated in the pathomechanism of cataract development. Taken together these results suggest that individuals carrying the R12C mutation are at an increased risk to develop early-onset cataract under condition of oxidative stress.  相似文献   

19.
The sensitivity of Bacillus subtilis to hydrogen peroxide (oxidative stress) was found to vary with the position of the culture in the growth cycle. The most dramatic change occurred at the stationary phase, when the cells became totally resistant to 10 mM H2O2, in contrast to the loss of 3 to 4 log units of viability when treated at the early log phase. Two of the eight proteins induced by a protective concentration of H2O2 (50 muM) were also induced (in the absence of oxidative stress) on entry into the late log phase of growth. The response of five isogenic spo0 mutants (spo0B, spo0E, spo0F, spo0H, and spo0J) to oxidative stress was identical to that of the wild-type parental strain. In an isogenic spo0A strain, mid-log-phase cells were 100-fold less sensitive to 10 mM H2O2 than was the wild type. Pretreatment with 50 microM H2O2 induced little further protection, suggesting that the response is constitutive in this strain. By comparison of proteins induced by 50 microM H2O2 in the wild-type, spo0A, spo0H, and spo0J strains, four proteins were identified that may be essential for protection against lethal concentrations of H2O2. The presence of multiple copies of the spo0H gene in a spo0A background converted the stress phenotype of the spo0A mutant to that of the wild type but left the sporulation phenotype unaltered.  相似文献   

20.
The human gastric pathogenic bacterium Helicobacter pylori lacks a MutSLH-like DNA mismatch repair system. Here, we have investigated the functional roles of a mutS homologue found in H. pylori, and show that it plays an important physiological role in repairing oxidative DNA damage. H. pylori mutS mutants are more sensitive than wild-type cells to oxidative stress induced by agents such as H2O2, paraquat or oxygen. Exposure of mutS cells to oxidative stress results in a significant ( approximately 10-fold) elevation of mutagenesis. Strikingly, most mutations in mutS cells under oxidative stress condition are G:C to T:A transversions, a signature of 8-oxoguanine (8-oxoG). Purified H. pylori MutS protein binds with a high specific affinity to double-stranded DNA (dsDNA) containing 8-oxoG as well as to DNA Holliday junction structures, but only weakly to dsDNA containing a G:A mismatch. Under oxidative stress conditions, mutS cells accumulate higher levels (approximately threefold) of 8-oxoG DNA lesions than wild-type cells. Finally, we observe that mutS mutant cells have reduced colonization capacity in comparison to wild-type cells in a mouse infection model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号