首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Kaposi's sarcoma-associated herpesvirus encodes two transmembrane proteins (modulator of immune recognition [MIR]1 and MIR2) that downregulate cell surface molecules (MHC-I, B7.2, and ICAM-1) involved in the immune recognition of infected cells. This downregulation results from enhanced endocytosis and subsequent endolysosomal degradation of the target proteins. Here, we show that expression of MIR1 and MIR2 leads to ubiquitination of the cytosolic tail of their target proteins and that ubiquitination is essential for their removal from the cell surface. MIR1 and MIR2 both contain cytosolic zinc fingers of the PHD subfamily, and these structures are required for this activity. In vitro, addition of a MIR2-glutathione S-transferase (GST) fusion protein to purified E1 and E2 enzymes leads to transfer of ubiquitin (Ub) to GST-containing targets in an ATP- and E2-dependent fashion; this reaction is abolished by mutation of the Zn-coordinating residues of the PHD domain. Thus, MIR2 defines a novel class of membrane-bound E3 Ub ligases that modulates the trafficking of host cell membrane proteins.  相似文献   

2.
Poxviruses and gamma-2 herpesviruses share the K3 family of viral immune evasion proteins that inhibit the surface expression of glycoproteins such as major histocompatibility complex class I (MHC-I), B7.2, ICAM-1, and CD95(Fas). K3 family proteins contain an amino-terminal PHD/LAP or RING-CH domain followed by two transmembrane domains. To examine whether human homologues are functionally related to the viral immunoevasins, we studied seven membrane-associated RING-CH (MARCH) proteins. All MARCH proteins located to subcellular membranes, and several MARCH proteins reduced surface levels of known substrates of the viral K3 family. Two closely related proteins, MARCH-IV and MARCH-IX, reduced surface expression of MHC-I molecules. In the presence of MARCH-IV or MARCH-IX, MHC-I was ubiquitinated and rapidly internalized by endocytosis, whereas MHC-I molecules lacking lysines in their cytoplasmic tail were resistant to downregulation. The amino-terminal regions containing the RING-CH domain of several MARCH proteins examined catalyzed multiubiquitin formation in vitro, suggesting that MARCH proteins are ubiquitin ligases. The functional similarity of the MARCH family and the K3 family suggests that the viral immune evasion proteins were derived from MARCH proteins, a novel family of transmembrane ubiquitin ligases that seems to target glycoproteins for lysosomal destruction via ubiquitination of the cytoplasmic tail.  相似文献   

3.
Karki R  Lang SM  Means RE 《PLoS pathogens》2011,7(4):e1001331
Kaposi's sarcoma (KS) lesions are complex mixtures of KS-associated herpesvirus (KSHV)-infected spindle and inflammatory cells. In order to survive the host immune responses, KSHV encodes a number of immunomodulatory proteins, including the E3 ubiquitin ligase K5. In exploring the role of this viral protein in monocytes, we made the surprising discovery that in addition to a potential role in down regulation of immune responses, K5 also contributes to increased proliferation and alters cellular metabolism. This ubiquitin ligase increases aerobic glycolysis and lactate production through modulation of cellular growth factor-binding receptor tyrosine kinase endocytosis, increasing the sensitivity of cells to autocrine and paracrine factors. This leads to an altered pattern of cellular phosphorylation, increases in Akt activation and a longer duration of Erk1/2 phosphorylation. Overall, we believe this to be the first report of a virally-encoded ubiquitin ligase potentially contributing to oncogenesis through alterations in growth factor signaling cascades and opens a new avenue of research in K5 biology.  相似文献   

4.
Kaposi's sarcoma associated-herpes virus encodes two proteins, MIR (modulator of immune recognition) 1 and 2, which are involved in the evasion of host immunity. MIR1 and 2 have been shown to function as an E3 ubiquitin ligase for immune recognition-related molecules (e.g. major histocompatibility complex class I, B7-2, and ICAM-1) through the BKS (bovine herpesvirus 4, Kaposi's sarcoma associated-herpes virus, and Swinepox virus) subclass of plant homeodomain (PHD) domain, termed the BKS-PHD domain. Here we show that the human genome also encodes a novel BKS-PHD domain-containing protein that functions as an E3 ubiquitin ligase and whose putative substrate is the B7-2 co-stimulatory molecule. This novel E3 ubiquitin ligase was designated as c-MIR (cellular MIR) based on its functional and structural similarity to MIR1 and 2. Forced expression of c-MIR induced specific down-regulation of B7-2 surface expression through ubiquitination, rapid endocytosis, and lysosomal degradation of the target molecule. This specific targeting was dependent upon the binding of c-MIR to B7-2. Replacing the BKS-PHD domain of MIR1 with the corresponding domain of c-MIR did not alter MIR1 function. The discovery of c-MIR, a novel E3 ubiquitin ligase, highlights the possibility that viral immune regulatory proteins originated in the host genome and presents unique functions of BKS-PHD domain-containing proteins in mammals.  相似文献   

5.
《Epigenetics》2013,8(11):1162-1175
The histone lysine demethylase KDM5B plays key roles in gene repression by demethylating trimethylated lysine 4 of histone H3 (H3K4me3), a modification commonly found at the promoter region of actively transcribed genes. KDM5B is known to regulate the expression of genes involved in cell cycle progression; however, little is known about the post-translational modifications that regulate KDM5B. Herein, we report that KDM5B is SUMOylated at lysine residues 242 and 278 and that the ectopic expression of the hPC2 SUMO E3 ligase enhances this SUMOylation. Interestingly, the levels of KDM5B and its SUMOylated forms are regulated during the cell cycle. KDM5B is modulated by RNF4, an E3 ubiquitin ligase that targets SUMO-modified proteins to proteasomal degradation. Digital gene expression analyses showed that cells expressing the SUMOylation-deficient KDM5B harbor repressed mRNA expression profiles of cell cycle and DNA repair genes. Chromatin immunoprecipitations confirmed some of these genes as KDM5B targets, as they displayed reduced H3K4me3 levels in cells ectopically expressing KDM5B. We propose that SUMOylation by hPC2 regulates the activity of KDM5B.  相似文献   

6.
7.
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiological agent of multicentric Castleman’s disease, primary effusion lymphoma and Kaposi’s sarcoma. In this study, we show that like the C-type lectin DC-SIGN, the closely related DC-SIGNR can also enhance KSHV infection. Following infection, they are both targeted for down modulation and our data indicate that the KSHV MARCH-family ubiquitin ligase K5 is mediating this regulation and subsequent targeting for degradation of DC-SIGN and DC-SIGNR in the context of the virus. The closely related viral K3 protein, is also able to target these lectins in exogenous expressions studies, but only weakly during viral infection. In addition to requiring a functional RING-CH domain, several protein trafficking motifs in the C-terminal region of both K3 and K5 are important in regulation of DC-SIGN and DC-SIGNR. Further exploration of this modulation revealed that DC-SIGN is endocytosed from the cell surface in THP-1 monocytes, but degraded from an internal location with minimal endocytosis in HEK-293 cells. Pull-down data indicate that both K3 and K5 preferentially associate with immature forms of the lectins, mediating their ubiquitylation and degradation. Together, these data emphasize the molecular complexities of K3 and K5, while expanding the repertoire of targets of these two viral proteins.  相似文献   

8.
During the early phase of infection, the E1B-55K protein of adenovirus type 5 (Ad5) counters the E1A-induced stabilization of p53, whereas in the late phase, E1B-55K modulates the preferential nucleocytoplasmic transport and translation of the late viral mRNAs. The mechanism(s) by which E1B-55K performs these functions has not yet been clearly elucidated. In this study, we have taken a proteomics-based approach to identify and characterize novel E1B-55K-associated proteins. A multiprotein E1B-55K-containing complex was immunopurified from Ad5-infected HeLa cells and found to contain E4-orf6, as well as several cellular factors previously implicated in the ubiquitin-proteasome-mediated destruction of proteins, including Cullin-5, Rbx1/ROC1/Hrt1, and Elongins B and C. We further demonstrate that a complex containing these as well as other proteins is capable of directing the polyubiquitination of p53 in vitro. These ubiquitin ligase components were found in a high-molecular-mass complex of 800 to 900 kDa. We propose that these newly identified binding partners (Cullin-5, Elongins B and C, and Rbx1) complex with E1B-55K and E4-orf6 during Ad infection to form part of an E3 ubiquitin ligase that targets specific protein substrates for degradation. We further suggest that E1B-55K functions as the principal substrate recognition component of this SCF-type ubiquitin ligase, whereas E4-orf6 may serve to nucleate the assembly of the complex. Lastly, we describe the identification and characterization of two novel E1B-55K interacting factors, importin-alpha 1 and pp32, that may also participate in the functions previously ascribed to E1B-55K and E4-orf6.  相似文献   

9.
Adenovirus type 5 (Ad5) inactivates the host cell DNA damage response by facilitating the degradation of Mre11, DNA ligase IV, and p53. In the case of p53, this is achieved through polyubiquitylation by Ad5E1B55K and Ad5E4orf6, which recruit a Cul5-based E3 ubiquitin ligase. Recent evidence indicates that this paradigm does not apply to other adenovirus serotypes, since Ad12, but not Ad5, causes the degradation of TOPBP1 through the action of E4orf6 alone and a Cul2-based E3 ubiquitin ligase. We now have extended these studies to adenovirus groups A to E. While infection by Ad4, Ad5, and Ad12 (groups E, C, and A, respectively) cause the degradation of Mre11, DNA ligase IV, and p53, infection with Ad3, Ad7, Ad9, and Ad11 (groups B1, B1, D, and B2, respectively) only affects DNA ligase IV levels. Indeed, Ad3, Ad7, and Ad11 cause the marked accumulation of p53. Despite this, MDM2 levels were very low following infection with all of the viruses examined here, regardless of whether they increase p53 expression. In addition, we found that only Ad12 causes the degradation of TOPBP1, and, like Ad5, Ad4 recruits a Cul5-based E3 ubiquitin ligase to degrade p53. Surprisingly, Mre11 and DNA ligase IV degradation do not appear to be significantly affected in Ad4-, Ad5-, or Ad12-infected cells depleted of Cul2 or Cul5, indicating that E1B55K and E4orf6 recruit multiple ubiquitin ligases to target cellular proteins. Finally, although Mre11 is not degraded by Ad3, Ad7, Ad9, and Ad11, no viral DNA concatemers could be detected. We suggest that group B and D adenoviruses have evolved mechanisms based on the loss of DNA ligase IV and perhaps other unknown molecules to disable the host cell DNA damage response to promote viral replication.  相似文献   

10.
TRAC-1 (T cell RING (really interesting new gene) protein identified in activation screen) is a novel E3 ubiquitin ligase identified from a retroviral vector-based T cell surface activation marker screen. The C-terminal truncated TRAC-1 specifically inhibited anti-TCR-mediated CD69 up-regulation in Jurkat cells, a human T leukemic cell line. In this study, we show that TRAC-1 is a RING finger ubiquitin E3 ligase with highest expression in lymphoid tissues. Point mutations that disrupt the Zn(2+)-chelating ability of its amino-terminal RING finger domain abolished TRAC-1's ligase activity and the dominant inhibitory effect of C-terminal truncated TRAC-1 on TCR stimulation. The results of in vitro biochemical studies indicate that TRAC-1 can stimulate the formation of both K48- and K63-linked polyubiquitin chains and therefore could potentially activate both degradative and regulatory ubiquitin-dependent pathways. Antisense oligonucleotides to TRAC-1 specifically reduced TRAC-1 mRNA levels in Jurkat and primary T cells and inhibited their activation in response to TCR cross-linking. Collectively, these results indicate that the E3 ubiquitin ligase TRAC-1 functions as a positive regulator of T cell activation.  相似文献   

11.
12.
The downregulation of cell surface receptors by endocytosis is a fundamental requirement for the termination of signalling responses and ubiquitination is a critical regulatory step in receptor regulation. The K5 gene product of Kaposi's sarcoma‐associated herpesvirus is an E3 ligase that ubiquitinates and downregulates several cell surface immunoreceptors, including major histocompatibility complex (MHC) class I molecules. Here, we show that K5 targets the membrane proximal lysine of MHC I for conjugation with mixed linkage polyubiquitin chains. Quantitative mass spectrometry revealed an increase in lysine‐11, as well as lysine‐63, linked polyubiquitin chains on MHC I in K5‐expressing cells. Using a combination of mutant ubiquitins and MHC I molecules expressing a single cytosolic lysine residue, we confirm a functional role for lysines‐11 and ‐63 in K5‐mediated MHC I endocytosis. We show that lysine‐11 linkages are important for receptor endocytosis, and that complex mixed linkage polyubiquitin chains are generated in vivo.  相似文献   

13.
The genomes of several poxviruses contain open reading frames with homology to the K3 and K5 genes of Kaposi's sarcoma-associated herpesvirus (KSHV) and the K3 gene of murine gammaherpesvirus 68, which target major histocompatibility complex class I (MHC-I) as well as costimulatory molecules for proteasomal or lysosomal degradation. The homologous gene product of myxomavirus (MV), M153R, was recently shown to reduce the cell surface expression of MHC-I. In addition, normal MHC-I surface expression was observed in cells infected with MV lacking M153R (J. L. Guerin, J. Gelfi, S. Boullier, M. Delverdier, F. A. Bellanger, S. Bertagnoli, I. Drexler, G. Sutter, and F. Messud-Petit, J. Virol. 76:2912-2923, 2002). Here, we show that M153R also downregulates the T-cell coreceptor CD4 and we study the molecular mechanism by which M153R achieves the downregulation of CD4 and MHC-I. Upon M153R expression, CD4 was rapidly internalized and degraded in lysosomes, whereas deletion of M153R from the genome of MV restored CD4 expression. The downregulation of both CD4 and MHC-I was dependent on the presence of lysine residues in their cytoplasmic tails. Increased ubiquitination of CD4 was observed upon coexpression with M153R in the presence of inhibitors of lysosomal acidification. Surface expression of CD4 was restored upon overexpression of Hrs, a ubiquitin interaction motif-containing protein that sorts ubiquitinated proteins into endosomes. Moreover, the purified PHD/LAP zinc finger of M153R catalyzed the formation of multiubiquitin adducts in vitro. Our data suggest that M153R acts as a membrane-bound ubiquitin ligase that conjugates ubiquitin to the cytoplasmic domain of substrate glycoproteins, with ubiquitin serving as a lysosomal targeting signal. Since a similar mechanism was recently proposed for KSHV K5, it seems that members of the unrelated families of gamma-2 herpesviruses and poxviruses share a common immune evasion mechanism that targets host cell immune receptors.  相似文献   

14.
15.
Lu Z  Je HS  Young P  Gross J  Lu B  Feng G 《The Journal of cell biology》2007,177(6):1077-1089
The ubiquitin-proteasome pathway has been implicated in synaptic development and plasticity. However, mechanisms by which ubiquitination contributes to precise and dynamic control of synaptic development and plasticity are poorly understood. We have identified a PDZ domain containing RING finger 3 (PDZRN3) as a synapse-associated E3 ubiquitin ligase and have demonstrated that it regulates the surface expression of muscle-specific receptor tyrosine kinase (MuSK), the key organizer of postsynaptic development at the mammalian neuromuscular junction. PDZRN3 binds to MuSK and promotes its ubiquitination. Regulation of cell surface levels of MuSK by PDZRN3 requires the ubiquitin ligase domain and is mediated by accelerated endocytosis. Gain- and loss-of-function studies in cultured myotubes show that regulation of MuSK by PDZRN3 plays an important role in MuSK-mediated nicotinic acetylcholine receptor clustering. Furthermore, overexpression of PDZRN3 in skeletal muscle of transgenic mice perturbs the growth and maturation of the neuromuscular junction. These results identify a synapse-associated E3 ubiquitin ligase as an important regulator of MuSK signaling.  相似文献   

16.
Rab5 GTPases are key regulators of protein trafficking through the early stages of the endocytic pathway. The yeast Rab5 ortholog Vps21p is activated by its guanine nucleotide exchange factor Vps9p. Here we show that Vps9p binds ubiquitin and that the CUE domain is necessary and sufficient for this interaction. Vps9p ubiquitin binding is required for efficient endocytosis of Ste3p but not for the delivery of the biosynthetic cargo carboxypeptidase Y to the vacuole. In addition, Vps9p is itself monoubiquitylated. Ubiquitylation is dependent on a functional CUE domain and Rsp5p, an E3 ligase that participates in cell surface receptor endocytosis. These findings define a new ubiquitin binding domain and implicate ubiquitin as a modulator of Vps9p function in the endocytic pathway.  相似文献   

17.
The human immunodeficiency virus type 1 (HIV-1) virion infectivity factor (Vif) overcomes the antiviral activity of APOBEC3G to protect HIV-1 DNA from G-to-A hypermutation. Vif targets APOBEC3G for ubiquitination and proteasomal degradation by forming an SCF-like E3 ubiquitin ligase complex composed of Cullin5, Elongin B, and Elongin C (Vif-BC-Cul5) through a novel SOCS-box motif. In this paper, we have established an in vitro ubiquitin conjugation assay with purified Vif-BC-Cul5 complex and reported that the Vif-BC-Cul5 complex could function as an E3 ligase for APOBEC3G in vitro. A Vif-BC-Cul5 complex promotes the in vitro ubiquitination of the wild type, APOBEC3G but not that of D128K mutant, which does not interact with Vif. We have also investigated several loss-of-function Vif mutants. One mutant, SLQ144/146AAA, lost its activity on APOBEC3G because it could not form a complex due to mutations in SOCS-box motif. Other mutants, C114S and C133S, also lost their activity because of loss of the E3 ligase activity of a Vif-BC-Cul5 complex, although these mutants retained the ability to bind to APOBEC3G as well as Cul5 complex. These findings suggest that the E3 ubiquitin ligase activity of the Vif-BC-Cul5 complex is essential for Vif function against APOBEC3G.  相似文献   

18.
Recent discoveries have unveiled the roles of a complicated network of E3 ubiquitin ligases in regulating cell migration machineries. The E3 ubiquitin ligases Smurf1 and Cul/BACURD ubiquitinate RhoA to regulate stress fiber formation and cell polarity, and ASB2α ubiquitinates filamins to modulate cytoskeletal stiffness, thus regulating cell spreading and cell migration. HACE1, XIAP, and Skp1-Cul1-F-box bind to Rac1 and cause its ubiquitination and degradation, thus suppressing lamellipodium protrusions, while PIAS3, a SUMO ligase, activates Rac1 to promote lamellipodium dynamics. Smurf1 also enhances Rac1 activation but it does not ubiquitinate Rac1. Both Smurf1 and HECTD1 regulate focal adhesion (FA) assembly and (or) disassembly through ubiquitinating the talin head domain and phosphatidylinositol 4 phosphate 5-kinase type I γ (PIPKIγ90), respectively. Thus, E3 ubiquitin ligases regulate stress fiber formation, cell polarity, lamellipodium protrusions, and FA dynamics through ubiquitinating the key proteins that control these processes.  相似文献   

19.
20.
Ubiquitin ligases are critical components of the ubiquitination process that determine substrate specificity and, in collaboration with E2 ubiquitin-conjugating enzymes, regulate the nature of polyubiquitin chains assembled on their substrates. Cellular inhibitor of apoptosis (c-IAP1 and c-IAP2) proteins are recruited to TNFR1-associated signalling complexes where they regulate receptor-stimulated NF-κB activation through their RING domain ubiquitin ligase activity. Using a directed yeast two-hybrid screen, we found several novel and previously identified E2 partners of IAP RING domains. Among these, the UbcH5 family of E2 enzymes are critical regulators of the stability of c-IAP1 protein following destabilizing stimuli such as TWEAK or CD40 signalling or IAP antagonists. We demonstrate that c-IAP1 and UbcH5 family promote K11-linked polyubiquitination of receptor-interacting protein 1 (RIP1) in vitro and in vivo. We further show that TNFα-stimulated NF-κB activation involves endogenous K11-linked ubiquitination of RIP1 within the TNFR1 signalling complex that is c-IAP1 and UbcH5 dependent. Lastly, NF-κB essential modifier efficiently binds K11-linked ubiquitin chains, suggesting that this ubiquitin linkage may have a signalling role in the activation of proliferative cellular pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号