首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hypoxia inducible factor-1alpha (HIF-1alpha) mRNA expression is significantly decreased under hypoxia in different cell lines exposed directly to hypoxia or treated with dimethyloxalylglycine which mimics hypoxic effects under normoxic conditions. However, the decreased expression of HIF-1alpha mRNA is accompanied by an increase of HIF-1alpha protein (pHIF-1alpha) level as well as by overexpression of known HIF-dependent genes (VEGF, Glut1, PFKFB-3 and PFKFB-4) under hypoxic conditions or with the use of dimethyloxalylglycine. Expression of HIF-1alpha mRNA also depends on iron because desferrioxamine and cobalt chloride produce similar to hypoxia effects on the levels of this mRNA. It was shown that HIF-1alpha mRNA expression did not change significantly in some cell lines (SKBR3, MDA-MB468 and BT549) under hypoxia. However, in these cell lines hypoxia decreases expression of HIF-2alpha mRNA, another member of HIF-alpha gene family, as a result of cell specific regulation of HIF-alpha genes under hypoxia. Moreover, hypoxia slightly induces expression of PFKFB-4 mRNA in SKBR3, MDA-MB468 and BT549 as compared to other cell lines where this effect of hypoxia was much stronger and adaptation to hypoxia is controlled by HIF-1alpha. Hypoxia slightly reduces expression of tumor suppressor VHL which targets HIF-1alpha for ubiquitination. Thus, our results clearly demonstrated down regulation of HIF-1alpha or HIF-2alpha in different cell lines by hypoxia.  相似文献   

3.
4.
5.
6.
Respiratory distress syndrome (RDS) secondary to preterm birth and surfactant deficiency is characterized by severe hypoxemia, lung injury, and impaired production of nitric oxide (NO) and vascular endothelial growth factor (VEGF). Since hypoxia-inducible factors (HIFs) mediate the effects of both NO and VEGF in part through regulation by prolyl-hydroxylase-containing domains (PHDs) in the presence of oxygen, we hypothesized that HIF-1alpha and -2alpha in the lung are decreased following severe RDS in preterm neonatal lambs. To test this hypothesis, fetal lambs were delivered at preterm gestation (115-day gestation, term = 145 days; n = 4) and mechanically ventilated for 4 h. Lambs developed respiratory failure characterized by severe hypoxemia despite treatment with mechanical ventilation with high inspired oxygen concentrations. Lung samples were compared with nonventilated control animals at preterm (115-day gestation; n = 3) and term gestation (142-day gestation; n = 3). We found that HIF-1alpha protein expression decreased (P < 0.05) and PHD-2 expression increased (P < 0.005) at birth in normal term animals before air breathing. Compared with age-matched controls, HIF-1alpha protein and HIF-2alpha protein expression decreased by 80% and 55%, respectively (P < 0.005 for each) in preterm lambs with RDS. Furthermore, VEGF mRNA was decreased by 40%, and PHD-2 protein expression doubled in RDS lambs. We conclude that pulmonary expression of HIF-1alpha, HIF-2alpha, and the downstream target of their regulation, VEGF mRNA, is impaired following RDS in neonatal lambs. We speculate that early disruption of HIF and VEGF expression after preterm birth and RDS may contribute to long-term abnormalities in lung growth, leading to bronchopulmonary dysplasia.  相似文献   

7.
8.
9.
Haddad JJ  Land SC 《FEBS letters》2001,505(2):269-274
A non-hypoxic, reactive oxygen species (ROS)-sensitive pathway mediating tumor necrosis factor-alpha (TNF-alpha)-dependent regulation of hypoxia-inducible factor-1alpha (HIF-alpha) was investigated in vitro. TNF-alpha mediated the translocation of HIF-1alpha, associated with up-regulating its activity under normoxia. Analysis of the mode of action of TNF-alpha revealed the accumulation of hydrogen peroxide (H2O2), superoxide anion (O(2-.)) and hydroxyl radical (.OH). Antioxidants purported as prototypical scavengers of H2O2 and .OH, attenuated TNF-alpha-induced HIF-1alpha activation, and blockading NADPH-oxidase by scavenging O(2-.) reduced the activity of HIF-1alpha. Inhibition of the mitochondrion complex I abrogated TNF-alpha-dependent activation of HIF-1alpha. Interrupting the respiratory chain reversed the excitatory effect of TNF-alpha on HIF-1alpha. These results indicate a non-hypoxic pathway mediating cytokine-dependent regulation of HIF-1alpha in a ROS-sensitive mechanism.  相似文献   

10.
11.
This study tested the hypothesis that specific hypoxic molecules, including hypoxia-inducible factor-1alpha (HIF-1alpha), neuronal nitric oxide synthase (nNOS), and vascular endothelial growth factor (VEGF), are upregulated within the cerebral cortex of acutely anemic rats. Isoflurane-anesthetized rats underwent acute hemodilution by exchanging 50% of their blood volume with pentastarch. Following hemodilution, mean arterial pressure and arterial Pa(O(2)) values did not differ between control and anemic rats while the hemoglobin concentration decreased to 57 +/- 2 g/l. In anemic rats, cerebral cortical HIF-1alpha protein levels were increased, relative to controls (1.7 +/- 0.5-fold, P < 0.05). This increase was associated with an increase in mRNA levels for VEGF, erythropoietin, CXCR4, iNOS, and nNOS (P < 0.05 for all), but not endothelial NOS. Cerebral cortical nNOS and VEGF protein levels were increased in anemic rats, relative to controls (2.0 +/- 0.2- and 1.5 +/- 0.4-fold, respectively, P < 0.05 for both). Immunohistochemistry demonstrated increased HIF-1alpha and VEGF staining in perivascular regions of the anemic cerebral cortex and an increase in the number of nNOS-positive cerebral cortical cells (3.2 +/- 1.0-fold, P < 0.001). The nNOS-positive cells costained with the neuronal marker, Neu-N, but not with the astrocytic marker glial fibrillary acidic protein (GFAP). These nNOS-positive neurons frequently sent axonal projections toward cerebral blood vessels. Conversely, VEGF immunostaining colocalized with both neuronal (NeuN) and astrocytic markers (GFAP). In conclusion, acute normotensive, normoxemic hemodilution increased the levels of HIF-1alpha protein and mRNA for HIF-1-responsive molecules. nNOS and VEGF protein levels were also increased within the cerebral cortex of anemic rats at clinically relevant hemoglobin concentrations.  相似文献   

12.
13.
14.
Diminished alveolar and vascular development is characteristic of bronchopulmonary dysplasia (BPD) affecting many preterm newborns. Hypoxia promotes angiogenic responses in developing lung via, for example, vascular endothelial growth factor (VEGF). To determine if prolyl 4-hydroxylase (PHD) inhibition could augment hypoxia-inducible factors (HIFs) and expression of angiogenic proteins essential for lung development, HIF-1alpha and -2alpha proteins were assessed in human developing and adult lung microvascular endothelial cells and alveolar epithelial-like cells treated with either the HIF-PHD-selective inhibitor PHI-1 or the nonselective PHD inhibitors dimethyloxaloylglycine (DMOG) and deferoxamine (DFO). PHI-1 stimulated HIF-1alpha and -2alpha equally or more effectively than did DMOG or DFO, enhanced VEGF release, and elevated glucose consumption, whereas it was considerably less cytotoxic than DMOG or DFO. Moreover, VEGF receptor Flt-1 levels increased, whereas KDR/Flk-1 decreased. PHI-1 treatment also increased PHD-2, but not PHD-1 or -3, protein. These results provide proof of principle that HIF stimulation and modulation of HIF-regulated angiogenic proteins through PHI-1 treatment are feasible, effective, and nontoxic in human lung cells, suggesting the use of PHI-1 to enhance angiogenesis and lung growth in evolving BPD.  相似文献   

15.
16.
17.
18.
19.
20.
Hypoxia-inducible factor (HIF)-α subunits (HIF-1α,HIF-2α and HIF-3α),which play a pivotalrole during the development of hypoxia-induced pulmonary hypertension (HPH),are regulated through post-U'anslational hydroxylation by their three prolyl hydroxylase domain-containing proteins (PHD 1,PHD2 and PHD3).PHDs could also be regulated by HIF.But differential and reciprocal regulation between HIF-α and PHDs duringthe development of HPH remains unclear.To investigate this problem,a rat HPH model was established.Meanpulmonary arterial pressure increased significantly after 7 d of hypoxia.Pulmonary artery remodeling indexand right ventricular hypertrophy became evident after 14 d of hypoxia.HIF-1α and HIF-2α mRNA increasedslightly after 7 d of hypoxia,but HIF-3α increased significantly after 3 d of hypoxia.The protein expressionlevels of all three HIF-α were markedly upregulated after exposure to hypoxia.PHD2 mRNA and proteinexpression levels were upregulated after 3 d of hypoxia;PHD 1 protein declined after 14 d of hypoxia withoutsignificant mRNA changes.PHD3 mRNA and protein were markedly upregulated after 3 d of hypoxia,then themRNA remained at a high level,but the protein declined after 14 d of hypoxia.In hypoxic animals,HIF-lotproteins negatively correlated with PHD2 proteins,whereas HIF-2α and HIF-3α proteins showed negativecorrelations with PHD3 and PHD 1 proteins,respectively.All three HIF-α proteins were positively correlatedwith PHD2 and PHD3 mRNA.In the present study,HIF-α subunits and PHDs showed differential andreciprocal regulation,and this might play a key pathogenesis role in hypoxia-induced pulmonary hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号