首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work was to investigate the protective effects of green tea polyphenols on the cytotoxic effects of hypolipidemic agent fenofibrate (FF), a peroxisome proliferator (PP), in human HepG2 cells. The results showed that high concentrations of FF induced human HepG2 cell death through a mechanism involving an increase of reactive oxygen species (ROS) and intracellular reduced glutathione (GSH) depletion. These effects were partially prevented by antioxidant green tea polyphenols. The elevated expression of PP-activated receptors alpha (PPARalpha) in HepG2 cells induced by FF was also decreased by treatment with green tea polyphenols. In conclusion, this result demonstrates that oxidative stress and PPARalpha are involved in FF cytotoxicity and green tea polyphenols have a protective effect against FF-induced cellular injury. It may be beneficial for the hyperlipidemic patients who were administered the hypolipidemic drug fenofibrate to drink tea or use green tea polyphenols synchronously during their treatment.  相似文献   

2.
Green tea polyphenols (GTP) are thought to help prevent oxidative stress-related diseases, such as cancer, cardiovascular disease, neurodegenerative disease, and aging. We here investigate the protective mechanisms of GTP on SH-SY5Y cells against apoptosis induced by the pro-parkinsonian neurotoxin 6-hydroxydopamine (6-OHDA). GTP rescued the changes in condensed nuclear and apoptotic bodies, attenuated 6-OHDA-induced early apoptosis, prevented the decrease in mitochondrial membrane potential, and suppressed accumulation of reactive oxygen species (ROS) and of intracellular free Ca(2+). GTP also counteracted the 6-OHDA-induced nitric oxide increase and overexpression of nNOS and iNOS, and decreased the level of protein-bound 3-nitrotyrosine (3-NT). In addition, GTP inhibited the autooxidation of 6-OHDA and scavenged oxygen free radicals in a dose- and time-dependent manner. Our results show that the protective effects of GTP on SH-SY5Y cells are mediated, at least in part, by controlling the ROS-NO pathway.  相似文献   

3.
The mycotoxin citrinin, is produced by several species of Penicillium, Aspergillus and Monascus, and is capable of inducing cytotoxicity, oxidative stress and apoptosis. The aim of the present study was to investigate the effect of citrinin in mouse skeletal muscle cells (C2C12) and to overcome the cellular adverse effects by supplementing green tea extract (GTE) rich in polyphenols. C2C12 myoblasts were differentiated to myotubes and were exposed to citrinin in a dose dependent manner (0–100 µM) for 24 h and IC50 value was found to be 100 µM that resulted in decreased cell viability, increased LDH leakage and compromised membrane integrity. Mitochondrial membrane potential loss, increased accumulation of intracellular ROS and sub G1 phase of cell cycle was observed. To ameliorate the cytotoxic effects of CTN, C2C12 cells were pretreated with GTE (20, 40, 80 µg/ml) for 2 h followed by citrinin (100 µM) treatment for 24 h. GTE pretreatment combated citrinin-induced cytotoxicity and oxidative stress. GTE at 40 and 80 µg/ml significantly promoted cell survival and upregulated antioxidant enzyme activities (CAT, SOD, GPx) and endogenous antioxidant GSH, while the gene and protein expression levels were significantly restored through its effective antioxidant mechanism. Present study results suggested the antioxidant properties of GTE as a herbal source in ameliorating the citrinin-induced oxidative stress.  相似文献   

4.
UVB radiation damages keratinocytes, potentially inducing chronic skin damage, cutaneous malignancy, and suppression of the immune system. Naturally occurring agents have been considered for prevention and treatment of various kinds of cancer, including skin cancer. Inositol hexaphosphate (IP6), an antioxidant, is a naturally occurring polyphosphorylated carbohydrate that has shown a strong anticancer activity in several experimental models. We assessed the protective effects of IP6 against UVB irradiationinduced injury and photocarcinogenesis by using HaCaT cells (human immortalized keratinocytes) and SKH1 hairless mice. We found that IP6 counteracts the harmful effects of UVB irradiation and increases the viability and survival of UVB-exposed cells. Treatment with IP6 after UVB irradiation (30 mJ/cm(2)) arrested cells in the G(1) and G(2) M phases while decreasing the S phase of the cell cycle. Treatment with IP6 also decreased UVB-induced apoptosis and caspase 3 activation. Topical application of IP6 followed by exposure to UVB irradiation in SKH1 hairless mice decreased tumor incidence and multiplicity as compared with control mice. Our results suggest that IP6 protects HaCaT cells from UVB-induced apoptosis and mice from UVB-induced tumors.  相似文献   

5.
Antimutagenic activity of green tea (Camellia sinensis) was studied using Salmonella typhimurium strains (TA 102) (Ames test). Aqueous tobacco extract was found to be mutagenic to S. typhimurium TA 102 at concentration of 50 mg/plate. Green tea polyphenols was found to inhibit the mutagenicity of tobacco in a concentration-dependent manner. Concentrations needed for 50% inhibition of mutagen-induced revertant formation was found to be 5 mg/plate. Green tea polyphenols was also found to inhibit the urinary mutagenicity in rats induced by tobacco extract. Moreover green tea polyphenols were found to inhibit in vitro nitrosation reaction produced by reaction sodium nitrite and methyl urea and further inhibition of mutagenicity indicating that green tea has dual action to bring out a reduction in the mutagenic and carcinogenic potential of tobacco.  相似文献   

6.
Previous studies have shown that tea consumption can impair trace element metabolism, particularly iron status, and increase the risk of anemia in humans and animals. More recently, however, evidence has been accumulating to show that, in animals, consumption of green tea or its polyphenols is associated with a reduction of the incidence and severity of a variety of experimentally induced cancers. In this study we have monitored the growth, trace element status, including hematological parameters of weanling rats given either (1) water, (2) 1% black tea, (3) 1% green, tea, or (4) 0.2% crude green tea extract as their sole drinking fluid while consuming diets containing either adequate or low amounts of iron. With the exception of manaanese, none of the trace elements studied (iron, copper, zinc, and manganese) or the hematological indices measured were affected by the type of beverage supplied, even though the polyphenol extract was shown to chelate metals in vitro and all the animals fed the low iron diet were shown to be anemic. There appeared to be an effect of black and green teas on manganese balance in, both the first and last weeks of the study. A lower level of brain managanese was associated with green tea consumption, and a higher level of this element in the kidneys of animals fed black tea. The results demonstrate that both black and green teas and a green tea polyphenol extract do not represent a risk to animals consuming the beverages as their sole fluid intake with respect to iron availability, although the interactions with manganese deserve further study.  相似文献   

7.
Antimutagenic activity of green tea polyphenols   总被引:12,自引:0,他引:12  
For centuries green tea has been a widely consumed beverage throughout the world. It is known to contain a number of pharmacologically active compounds. In this study water extracts of green tea (WEGT) and their major constituents, green tea polyphenols (GTP), were examined for antimutagenic activity. WEGT and GTP were found to significantly inhibit the reverse mutation induced by benzo[alpha]pyrene (BP), aflatoxin B1 (AFB1), 2-aminofluorene, and methanol extracts of coal tar pitch in Salmonella typhimurium TA100 and/or TA98 in the presence of a rat-liver microsomal activation system. GTP also inhibited gene forward mutation in V79 cells treated with AFB1 and BP, and also decreased the frequency of sister-chromatid exchanges and chromosomal aberrations in V79 cells treated with AFB1. The addition of GTP during and after nitrosation of methylurea resulted in a dose-dependent inhibition of mutagenicity. Studies to define the mechanism of the antimutagenic activity of GTP suggest that it may affect carcinogen metabolism, DNA adduct formation, the interaction of ultimate carcinogen or the scavenging of free radicals.  相似文献   

8.
L-Glutamine at 18 mM protects mammalian cells against freeze-thaw (FT) damage by a factor of about 6, depending on FT conditions, in balanced salt solutions. While not nearly as effective a cryoprotectant as dimethyl sulfoxide (DMSO) or propylene glycol (PG), the mechanism of protection by glutamine appears to be independent from that of DMSO or PG; thus, 18 mM glutamine is effective at reducing FT damage in combination with these agents. These combinations allow lower concentrations of the more toxic agents DMSO and PG to be used in FT medium. There is no pre-FT or post-FT effect of glutamine when cells are exposed to a FT cycle in balanced salt solutions. Hence, protection is due to its presence during the FT-cycle. The presence of 2 mM L-glutamine in Eagle's basal medium is sufficient to account for cryoprotection by this medium.  相似文献   

9.
Antioxidant effects of green tea and its polyphenols on bladder cells   总被引:2,自引:0,他引:2  
Genitourinary tract inflammation/ailments affect the quality of life and health of a large segment of society. In recent years, studies have demonstrated strong antioxidant effects of green tea and its associated polyphenols in inflammatory states. This in vitro study examined the antioxidant capabilities (and putative mechanisms of action) of green tea extract (GTE), polyphenon-60 (PP-60, 60% pure polyphenols), (-)-epicatechin-3-gallate (ECG) and (-)-epigallocatechin-3-gallate (EGCG) in normal/malignant human bladder cells following catechin treatment+/-1 mM H2O2 (oxidative agent). Cell viability, apoptosis and reactive oxygen species (ROS) formation were evaluated. Our results showed that H2O2 exposure significantly reduced normal (UROtsa) and high-grade (TCCSUP, T24) bladder cancer (BlCa) cell viability compared with control-treated cells (p<0.001). No affect on low-grade RT4 and SW780 BlCa cell viability was observed with exposure to H2O2. Compared to H2O2-treated UROtsa, treatment with PP-60, ECG and EGCG in the presence of H2O2 significantly improved UROtsa viability (p<0.01), with strongest effects evoked by ECG. Additionally, though not as effective as in UROtsa cells, viability of both high-grade TCCSUP and T24 BlCa cells, in comparison to H2O2-treated cells, was significantly improved (p<0.01) by treatment with PP-60, ECG, and EGCG in the presence of H2O2. Overall, our findings demonstrate that urothelium cell death via H2O2-induced oxidative stress is mediated, in part, through superoxide (O2-.;), and potentially, direct H2O2 mechanisms, suggesting that green tea polyphenols can protect against oxidative stress/damage and bladder cell death.  相似文献   

10.
11.
Ultraviolet B (UVB) irradiation induces skin damage and inflammation. One way to reduce the inflammation is via the use of molecules termed photochemopreventive agents. Sulforaphane (4-methylsulfinylbutyl isothiocyanate, SF), which is found in cruciferous vegetables, is known for its potent physiological properties. This study was designed to evaluate the effect of SF on skin inflammation in vitro and in vivo. In in vitro study using immortalized human keratinocytes (HaCaT), UVB caused marked inflammatory responses [i.e., decrease of HaCaT viability and increase of production of an inflammatory marker interleukin-6 (IL-6)]. SF recovered the cell proliferation and suppressed the IL-6 production. These anti-inflammatory effects of SF were explained by its ability to reduce UVB-induced inflammatory gene expressions [IL-6, IL-1β and cyclooxgenase-2 (COX-2)]. Because SF seems to have an impact on COX-2 expression, we focused on COX-2 and found that SF reduced UVB-induced COX-2 protein expression. In support of this, PGE2 released from HaCaT was suppressed by SF. Western blot analysis revealed that SF inhibited p38, ERK and SAPK/JNK activation, indicating that the inhibition of mitogen-activated protein kinases (MAPK) by SF would attenuate the expression of inflammatory mediators (e.g., COX-2), thereby reducing inflammatory responses. Moreover, we conducted skin thickening assay using HR-1 hairless mice and found that UVB-induced skin thickness, COX-2 protein expression and hyperplasia were all suppressed by feeding SF to the mice. These results suggest that SF has a potential use as a compound for protection against UVB-induced skin inflammation.  相似文献   

12.
In this study, we investigated the antimicrobial effect of tea polyphenols (TP) against Serratia marcescens and examined the related mechanism. Morphology changes of S. marcescens were first observed by transmission electron microscopy after treatment with TP, which indicated that the primary inhibition action of TP was to damage the bacterial cell membranes. The permeability of the outer and inner membrane of S. marcescens dramatically increased after TP treatment, which caused severe disruption of cell membrane, followed by the release of small cellular molecules. Furthermore, a proteomics approach based on two-dimensional gel electrophoresis and MALDI-TOF/TOF MS analysis was used to study the difference of membrane protein expression in the control and TP treatment S. marcescens. The results showed that the expression of some metabolism enzymes and chaperones in TP-treated S. marcescens significantly increased compared to the untreated group, which might result in the metabolic disorder of this bacteria. Taken together, our results first demonstrated that TP had a significant growth inhibition effect on S. marcescens through cell membrane damage.  相似文献   

13.
Our previous studies have shown that ginsenoside Rg2 protects the genotoxicity of UVB via earlier upregulation of p53 and GADD45 proteins. In the present study, we investigated the effects of Rg2 on the genotoxicity of UVB in cells transfected with p53 siRNA. The cells transfected with control siRNA, exposed to UVB and then post-incubated with 100?μM Rg2 showed increase in cell viability to about 20%, as compared to no significant increase in cell viability in cells transfected with p53 siRNA. The UVB-induced apoptosis was also decreased by 100?μM Rg2 to about 30% in control siRNA-transfected cells, as compared to only 10% decrease in the apoptosis in p53 siRNA-transfected cells. The p53 and GADD45 protein levels in control siRNA-transfected cells after UVB exposure increased to about 3.5 and 2.7 fold, respectively, as compared to the non-treated control. The increased p53 and GADD45 protein levels were downregulated by Rg2 in an Rg2 concentration-dependent manner. However, the protective effects of Rg2 were not shown in p53 siRNA-transfected cells. All these results suggest that Rg2 protects cells against UVB-induced genotoxicity by increasing DNA repair, in possible association with modulation of protein levels involved in p53 signaling pathway.  相似文献   

14.
Bacterial pneumonia in immunocompromised patients as well as elderly persons often becomes a life threatening disease, even when effective antibiotics are used extensively. In addition, the appearance of antibiotic-resistant bacteria in medical facilities as well as in patients requires another approach to treat such patients besides treatment with antibiotics. In this regard, green tea catechins, such as epigallocatechin gallate (EGCg), may be one of the potential agents for such purpose due to its possible potential immunomodulatory as well as antimicrobial activity. The studies by us showed that EGCg enhanced the in vitro resistance of alveolar macrophages to Legionella pneumophila infection by selective immunomodulatory effects on cytokine formation. Furthermore, the tobacco smoking-induced impairment of alveolar macrophages regarding antibacterial as well as immune activity was also recovered by EGCg treatment. These results indicate that EGCg may be a possible potential immunotherapeutic agent against respiratory infections in immunocompromised patients, such as heavy smokers.  相似文献   

15.
茶多酚提取方法的研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
茶多酚是一种理想的食品天然抗氧化剂,具有抗癌治病、防衰老、防辐射、消除人体自由基等多种生理功效,广泛用于食品、油脂、医药、化工等行业。近年来,对于茶多酚的提取方法多见于报遗,本文就国内外茶多酚提取方法的研究进展情况作以综述。  相似文献   

16.
We aimed to clarify whether grape seed polyphenols (GSPs) are candidates therapeutic agents against diabetes mellitus, and to determine what degree of GSP oligomerization has the most potent efficacy. We studied the protective effects of various molecular weight GSPs (monomer, oligomer, polymer, and oligonol) on high glucose-induced cytotoxicity. In the present study, a high concentration of glucose (30 mM) induced cytotoxicity and oxidative stress (reactive oxygen species and nitric oxide) in cultured LLC-PK1 cells, but treatment with GSPs, especially oligomer GSPs, had potent protective effects against high glucose-induced oxidative stress. In addition, high glucose induced nuclear translocation of nuclear factor-kappa B, and increased expression of cyclooxygenase-2, inducible nitric oxide synthase, and bax, but GSP treatment inhibited them. These results indicate that GSPs have protective effects against high glucose-induced cytotoxicity, and among them, oligomer GSPs have more potent effects than other GSPs (monomer, polymer, and oligonol) on high glucose-induced renal cell damage.  相似文献   

17.
Protective effect of colchiceine against acute liver damage   总被引:1,自引:0,他引:1  
Pretreatment of rats with colchiceine (10 micrograms/day/rat) for seven days protected against CCl4-induced liver damage. CCl4 intoxication was demonstrated histologically and by increased serum activities of alanine amino transferase (ALT), alkaline phosphatase (Alk. Phosph.) gamma glutamyl transpeptidase (GGTP), bilirubins and decreased activity of glucose-6-phosphatase (G-6Pase). Furthermore, an increase in liver lipid peroxidation and a decrease in plasma membrane GGTP and Alk. Phosph. activities were found. Colchiceine increased 1.5-fold the LD50 of CCl4 and prevented the release of intracellular enzymes as well as the decrease in GGTP and Alk. Phosph. activities in plasma membranes. It also completely prevented the lipid peroxidation induced by CCl4 and limited the extent of the histological changes.  相似文献   

18.
It has been recently shown that xanthohumol, a flavonoid present in hops, possesses antioxidant, anti-inflammatory and chemopreventive properties. However, its role in the aging brain has not been addressed so far. Therefore, this study aimed to investigate the possible neuroprotective activity of xanthohumol against age-related inflammatory and apoptotic brain damage in male senescence-accelerated prone mice (SAMP8). Animals were divided into 4 groups: Untreated young mice, untreated old mice and old mice treated either with 1 mg kg−1 day−1 or 5 mg kg−1 day−1 xanthohumol. Young and old senescence accelerated resistant mice (SAMR1) were used as controls. After 30 days of treatment, animals were sacrificed and their brains were collected and immediately frozen in liquid nitrogen. mRNA (GFAP, TNF-α, IL-1β, AIF, BAD, BAX, XIAP, NAIP and Bcl-2) and protein (GFAP, TNF-α, IL-1β, AIF, BAD, BAX, BDNF, synaptophysin and synapsin) expressions were measured by RT-PCR and Western blotting, respectively. Significant increased levels of pro-inflammatory (TNF-α, IL-1β) and pro-apoptotic (AIF, BAD, BAX) markers were observed in both SAMP8 and SAMR1 old mice compared to young animals (P<.05) and also in SAMP8 untreated old mice compared to SAMR1 (P<.05). These alterations were significantly less evident in animals treated with both doses of xanthohumol (P<.05). Also, a reduced expression of synaptic markers was observed in old mice compared to young ones (P<.05) but it significantly recovered with 5 mg kg−1 day−1 xanthohumol treatment (P<.05). In conclusion, xanthohumol treatment modulated the inflammation and apoptosis of aged brains, exerting a protective effect on damage induced by aging.  相似文献   

19.
20.
Synthetic analogs of green tea polyphenols as proteasome inhibitors   总被引:2,自引:0,他引:2  
BACKGROUND: Animal, epidemiological and clinical studies have demonstrated the anti-tumor activity of pharmacological proteasome inhibitors and the cancer-preventive effects of green tea consumption. Previously, one of our laboratories reported that natural ester bond-containing green tea polyphenols (GTPs), such as (-)-epigallocatechin-3-gallate [(-)-EGCG] and (-)-gallocatechin-3-gallate [(-)-GCG], are potent and specific proteasome inhibitors. Another of our groups, for the first time, was able to enantioselectively synthesize (-)-EGCG as well as other analogs of this natural GTP. Our interest in designing and developing novel synthetic GTPs as proteasome inhibitors and potential cancer-preventive agents prompted our current study. MATERIALS AND METHODS: GTP analogs, (+)-EGCG, (+)-GCG, and a fully benzyl-protected (+)-EGCG [Bn-(+)-EGCG], were prepared by enantioselective synthesis. Inhibition of the proteasome or calpain (as a control) activities under cell-free conditions were measured by fluorogenic substrate assay. Inhibition of intact tumor cell proteasome activity was measured by accumulation of some proteasome target proteins (p27, I kappa B-alpha and Bax) using Western blot analysis. Inhibition of tumor cell proliferation and induction of apoptosis by synthetic GTPs were determined by G(1) arrest and caspase activation, respectively. Finally, inhibition of the transforming activity of human prostate cancer cells by synthetic GTPs was measured by a colony formation assay. RESULTS: (+)-EGCG and (+)-GCG potently and specifically inhibit the chymotrypsin-like activity of purified 20S proteasome and the 26S proteasome in tumor cell lysates, while Bn-(+)-EGCG does not. Treatment of leukemic Jurkat T or prostate cancer LNCaP cells with either (+)-EGCG or (+)-GCG accumulated p27 and IkappaB-alpha proteins, associated with an increased G(1) population. (+)-EGCG treatment also accumulated the pro-apoptotic Bax protein and induced apoptosis in LNCaP cells expressing high basal levels of Bax, but not prostate cancer DU-145 cells with low Bax expression. Finally, synthetic GTPs significantly inhibited colony formation by LNCaP cancer cells. CONCLUSIONS: Enantiomeric analogs of natural GTPs, (+)-EGCG and (+)-GCG, are able to potently and specifically inhibit the proteasome both, in vitro and in vivo, while protection of the hydroxyl groups on (+)-EGCG renders the compound completely inactive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号