首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The tick Ixodes scapularis is an efficient vector for microbes, including the Lyme disease agent Borrelia burgdorferi. Ticks engorging on vertebrates induce recruitment of inflammatory cells to the bite site. For efficient transmission to the vector, pathogens have to traffic through this complex feeding site while avoiding the deleterious effects of immune cells. We show that a tick protein, Salp25D, plays a critical role-in the mammalian host-for acquisition of Borrelia burgdorferi by the vector. Silencing salp25D in tick salivary glands impaired spirochete acquisition by ticks engorging on B. burgdorferi-infected mice. Immunizing mice against Salp25D also decreased Borrelia acquisition by I. scapularis. Salp25D detoxified reactive oxygen species at the vector-pathogen-host interface, thereby providing a survival advantage to B. burgdorferi at the tick feeding site in mice. These data demonstrate that pathogens can exploit arthropod molecules to defuse mammalian responses in order to successfully enter the vector.  相似文献   

2.
3.
Borrelia burgdorferi, the causative agent of Lyme disease, is transmitted to humans by bite of Ixodes scapularis ticks. The mechanisms by which the bacterium is transmitted from vector to host are poorly understood. In this study, we show that the F(ab)(2) fragments of BBE31, a B.burgdorferi outer-surface lipoprotein, interfere with the migration of the spirochete from tick gut into the hemolymph during tick feeding. The decreased hemolymph infection results in lower salivary glands infection, and consequently attenuates mouse infection by tick-transmitted B. burgdorferi. Using a yeast surface display approach, a tick gut protein named TRE31 was identified to interact with BBE31. Silencing tre31 also decreased the B. burgdorferi burden in the tick hemolymph. Delineating the specific spirochete and arthropod ligands required for B. burgdorferi movement in the tick may lead to new strategies to interrupt the life cycle of the Lyme disease agent.  相似文献   

4.
5.
Methods currently used to control Ixodes scapularis ticks rely principally on acaricidal applications which suffer from a number of limitations. Recently, host vaccination against ticks has been shown to be a promising alternative tick control method. In tick salivary glands, numerous genes are induced during the feeding process. Many of these newly expressed proteins are secreted in tick saliva and may play a role in modulating host immune responses and pathogen transmission. We have performed suppression subtraction hybridization to identify unique I. scapularis salary gland proteins specifically expressed during engorgement. We have cloned and sequenced ten unique salivary gland-associated cDNAs that are up-regulated during feeding. The protein products of these genes represent potential vaccine candidates for use in the control of ticks and to prevent transmission of tick-borne diseases.  相似文献   

6.
Qiu WG  Dykhuizen DE  Acosta MS  Luft BJ 《Genetics》2002,160(3):833-849
Over 80% of reported cases of Lyme disease in the United States occur in coastal regions of northeastern and mid-Atlantic states. The genetic structure of the Lyme disease spirochete (Borrelia burgdorferi) and its main tick vector (Ixodes scapularis) was studied concurrently and comparatively by sampling natural populations of I. scapularis ticks along the East Coast from 1996 to 1998. Borrelia is genetically highly diverse at the outer surface protein ospC. Since Borrelia is highly clonal, the ospC alleles can be used to define clones. A newly designed reverse line blotting (RLB) assay shows that up to 10 Borrelia clones can infect a single tick. The clone frequencies in Borrelia populations are the same across the Northeast. On the other hand, I. scapularis populations show strong regional divergence (among northeastern, mid-Atlantic, and southern states) as well as local differentiation. The high genetic diversity within Borrelia populations and the disparity in the genetic structure between Borrelia and its tick vector are likely consequences of strong balancing selection on local Borrelia clones. Demographically, both Borrelia and I. scapularis populations in the Northeast show the characteristics of a species that has recently expanded from a population bottleneck. Major geological and ecological events, such as the last glacial maximum (18,000 years ago) and the modern-day expansion of tick habitats, are likely causes of the observed "founder effects" for the two organisms in the Northeast. We therefore conclude that the genetic structure of B. burgdorferi has been intimately shaped by the natural history of its main vector, the northern lineage of I. scapularis ticks.  相似文献   

7.
The Lyme disease spirochete, Borrelia burgdorferi, produces two outer surface lipoproteins, OspA and OspB, that are essential for colonization of tick vectors. Both proteins are highly expressed during transmission from infected mammals to feeding ticks and during colonization of tick midguts, but are repressed when bacteria are transmitted from ticks to mammals. Humans and other infected mammals generally do not produce antibodies against either protein, although some Lyme disease patients do seroconvert and produce antibodies against OspA for unknown reasons. We hypothesized that, if such patients had been fed upon by additional ticks, bacteria moving from the patients' bodies to the feeding ticks would have produced OspA and OspB proteins, which then led to immune system recognition and antibody production. This hypothesis was tested by analyzing immune responses of infected mice following feedings by additional Ixodes scapularis ticks. However, results of the present studies demonstrate that expression of OspA and OspB by B. burgdorferi during transmission from infected mammals to feeding ticks does not trigger seroconversion.  相似文献   

8.
9.
TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi   总被引:4,自引:0,他引:4  
The Lyme disease agent Borrelia burgdorferi naturally persists in a cycle that primarily involves ticks and mammals. We have now identified a tick receptor (TROSPA) that is required for spirochetal colonization of Ixodes scapularis. B. burgdorferi outer surface protein A, which is abundantly expressed on spirochetes within the arthropod and essential for pathogen adherence to the vector, specifically bound to TROSPA. TROSPA mRNA levels in ticks increased following spirochete infestation and decreased in response to engorgement, events that are temporally linked to B. burgdorferi entry into and egress from the vector. The blockade of TROSPA by TROSPA antisera or by the repression of TROSPA expression via RNA interference reduced B. burgdorferi adherence to the I. scapularis gut in vivo, thereby preventing efficient colonization of the vector and subsequently reducing pathogen transmission to the mammalian host. Identification of an I. scapularis receptor for B. burgdorferi is the first step toward elucidating arthropod ligands that are required for survival of spirochetes in nature.  相似文献   

10.
11.
Salp15, a 15-kDa tick salivary gland protein, has several suppressive modes of activity against host immunity and plays a critical role in the transmission of Lyme disease spirochetes in Ixodes scapularis and Ixodes ricinus, major vectors of Lyme disease in North America and Western Europe. Salp15 adheres to Borrelia burgdorferi and specifically interacts with its outer surface protein C (OspC), protecting the spirochete from antibody-mediated cytotoxicity and facilitating infection in the mice. Recently, we identified two Salp15 homologues, IperSalp15-1 and IperSalp15-2, in Ixodes persulcatus, a vector for Lyme disease in Japan. Here we describe the function of IperSalp15 in the transmission of Lyme borreliosis. To investigate the function of IperSalp15, recombinant IperSalp15-1 and IperSalp15-2 were prepared in bacterial and insect cells. Both were identified in the sera of tick-immunized hamsters, indicating that these are secretory proteins in exposed host animals. Solid-phase overlay and indirect fluorescence assays showed that IperSalp15 binds to OspC from B. burgdorferi, Borrelia garinii, and Borrelia afzelii. Importantly, this binding likely protected the spirochete from antibody-mediated cytotoxicity in vitro. In addition, IperSalp15 tended to facilitate infection in mice. Thus, further characterization of tick molecules, including IperSalp15, could lead to the development of new strategies to prevent the transmission of tick-borne diseases.  相似文献   

12.
The Lyme disease agent Borrelia burgdorferi is primarily transmitted to vertebrates by Ixodes ticks. The classical and alternative complement pathways are important in Borrelia eradication by the vertebrate host. We recently identified a tick salivary protein, designated P8, which reduced complement-mediated killing of Borrelia. We now discover that P8 interferes with the human lectin complement cascade, resulting in impaired neutrophil phagocytosis and chemotaxis and diminished Borrelia lysis. Therefore, P8 was renamed the tick salivary lectin pathway inhibitor (TSLPI). TSLPI-silenced ticks, or ticks exposed to TSLPI-immune mice, were hampered in Borrelia transmission. Moreover, Borrelia acquisition and persistence in tick midguts was impaired in ticks?feeding on TSLPI-immunized, B.?burgdorferi-infected mice. Together, our findings suggest an essential role for the lectin complement cascade in Borrelia eradication and demonstrate how a vector-borne pathogen co-opts a vector protein to facilitate early mammalian infection and vector colonization.  相似文献   

13.
C3H/HeN mice were inoculated with 10(6) spirochetes, either Borrelia burgdorferi strain N40 or the Portuguese strain of B. lusitaniae, PotiB2. Mice receiving spirochetes coinoculated with salivary gland lysate (SGL) demonstrated significantly higher spirochete loads in target organs as measured by quantitative real-time polymerase chain reaction. This effect was tick dependent, in that Ixodes ricinus SGL specifically enhanced B. lusitaniae load, whereas I. scapularis SGL specifically increased B. burgdorferi N40 load, but did not significantly affect the dissemination of B. lusitaniae. Protein profile analysis indicated at least 5 major protein differences between I. scapularis and I. ricinus SGL, which can possibly account for this specific tick-spirochete interaction.  相似文献   

14.
Borrelia burgdorferi, the causative agent of Lyme borreliosis, is transmitted to humans from the bite of Ixodes spp. ticks. During the borrelial tick-to-mammal life cycle, B. burgdorferi must adapt to many environmental changes by regulating several genes, including bba64. Our laboratory recently demonstrated that the bba64 gene product is necessary for mouse infectivity when B. burgdorferi is transmitted by an infected tick bite, but not via needle inoculation. In this study we investigated the phenotypic properties of a bba64 mutant strain, including 1) replication during tick engorgement, 2) migration into the nymphal salivary glands, 3) host transmission, and 4) susceptibility to the MyD88-dependent innate immune response. Results revealed that the bba64 mutant's attenuated infectivity by tick bite was not due to a growth defect inside an actively feeding nymphal tick, or failure to invade the salivary glands. These findings suggested there was either a lack of spirochete transmission to the host dermis or increased susceptibility to the host's innate immune response. Further experiments showed the bba64 mutant was not culturable from mouse skin taken at the nymphal bite site and was unable to establish infection in MyD88-deficient mice via tick infestation. Collectively, the results of this study indicate that BBA64 functions at the salivary gland-to-host delivery interface of vector transmission and is not involved in resistance to MyD88-mediated innate immunity.  相似文献   

15.
The density of spirochetes in field-collected or experimentally infected ticks is estimated mainly by assays based on microscopy. In this study, a real-time quantitative PCR (qPCR) protocol targeting the Borrelia burgdorferi-specific recA gene was adapted for use with a Lightcycler for rapid detection and quantification of the Lyme disease spirochete, B. burgdorferi, in field-collected Ixodes scapularis ticks. The sensitivity of qPCR for detection of B. burgdorferi DNA in infected ticks was comparable to that of a well-established nested PCR targeting the 16S-23S rRNA spacer. Of the 498 I. scapularis ticks collected from four northeastern states (Rhode Island, Connecticut, New York, and New Jersey), 91 of 438 (20.7%) nymphal ticks and 15 of 60 (25.0%) adult ticks were positive by qPCR assay. The number of spirochetes in individual ticks varied from 25 to 197,200 with a mean of 1,964 spirochetes per nymphal tick and a mean of 5,351 spirochetes per adult tick. No significant differences were found in the mean numbers of spirochetes counted either in nymphal ticks collected at different locations in these four states (P = 0.23 by one-way analysis of variance test) or in ticks infected with the three distinct ribosomal spacer restriction fragment length polymorphism types of B. burgdorferi (P = 0.39). A high degree of spirochete aggregation among infected ticks (variance-to-mean ratio of 24,877; moment estimate of k = 0.279) was observed. From the frequency distribution data and previously published transmission studies, we estimated that a minimum of 300 organisms may be required in a host-seeking nymphal tick to be able to transmit infection to mice while feeding on mice. These data indicate that real-time qPCR is a reliable approach for simultaneous detection and quantification of B. burgdorferi infection in field-collected ticks and can be used for ecological and epidemiological surveillance of Lyme disease spirochetes.  相似文献   

16.
Schoeler, G. B., Manweiler, S. A., and Wikel, S. K. 1999. Ixodes scapularis: Effects of repeated infestations with pathogen-free nymphs on macrophage and T lymphocyte cytokine responses of BALB/c and C3H/HeN mice. Experimental Parasitology 92, 239-248. Ixodes scapularis is the principal vector in the United States of Borrelia burgdorferi, the causative agent of Lyme borreliosis, the human granulocytic ehrichiosis agent, and Babesia microti. Infestation with I. scapularis nymphs has previously been shown to modulate host T lymphocyte cytokine production. Tick-induced host immunomodulation is increasingly recognized as a contributing factor in successful transmission and/or establishment of tick-borne pathogens. This study was conducted to determine the effects of repeated infestations with pathogen-free I. scapularis nymphs on the production of the macrophage cytokines interleukin (IL)-1beta and tumor necrosis factor-alpha and the T lymphocyte cytokines IL-2, IL-4, IL-10, and interferon-gamma in both BALB/c and C3H/HeN mice. The pattern of T lymphocyte cytokine production was evaluated to determine if repeated tick infestation polarizes the immune response toward a Th-1 or Th-2 cytokine profile. Female BALB/c and C3H/HeN mice were infested one to four times with pathogen-free I. scapularis nymphs, with a 14-day tick-free period between each exposure. After each infestation, tick biology parameters were measured and macrophage and T lymphocyte cytokine production was assessed. Elaboration of T lymphocyte and macrophage cytokines was quantitated by antigen capture enzyme-linked immunosorbent assay. Acquired resistance to I. scapularis feeding was not developed by either mouse strain. Significant differences in cytokine production were observed between infested and noninfested mice, as well as between the two mouse strains, following tick infestation. Infestation of both strains with pathogen-free I. scapularis results in a polarization of the host immune response toward a Th-2, anti-inflammatory pattern, with a corresponding suppression of Th-1 responses.  相似文献   

17.
Immunological interactions at the tick host interface involve innate and specific acquired host immune defenses and immunomodulatory countermeasures by the tick. Tick feeding stimulates host immune response pathways involving antigen-presenting cells, cytokines, B-cells, T-cells, circulating and homocytotropic antibodies, granulocytes, and an array of biologically active molecules. In response to host immune defenses, tick-mediated host immunosuppressive countermeasures inhibit: host antibody responses; complement activation; T-cell proliferation; and cytokine elaboration by macrophages and Th1-lymphocytes. Immunosuppressive proteins identified in tick salivary glands and saliva have been partially characterised. Tick-induced host immunosuppression facilitates blood meal acquisition and is an important factor in the transmission/establishment of the tick-borne disease-causing agent, Borrelia burgdorferi. A novel strategy for control of tick-borne pathogens is proposed.  相似文献   

18.
With the incidence of Lyme disease increasing throughout the United States, reducing risk of exposure to the disease is of the utmost concern. In the northeastern U.S., the blacklegged tick, Ixodes scapularis, is the primary vector and the white-footed mouse, (Peromyscus leucopus), the primary reservoir for Borrelia burgdorteri, the bacterium causing Lyme disease. Targeting I. scapularis engorging on white-footed mice with an effective biological control agent, such as the fungus Metarhizium anisopliae, could be an effective and relatively safe control technique. In 2002-2003, we performed laboratory and field experiments to determine whether M anisopliae-treated nesting material could effectively control larval I. scapularis ticks engorging on white-footed mice, and therefore reduce the number of infected nymphal I. scapularis questing the following summer. Our laboratory experiment demonstrated a strong negative effect of M. anisopliae-treated nesting material on survival of I. scapularis larvae feeding on P. leucopus, with 75% versus 35% larval mortality in treatment versus control nests. Our field trials caused only modest, localized reductions in nymphal abundance and had no effect on the proportion of nymphal I. scapularis infected with B. burgdorferi. Field results probably could be improved by increasing the density of nestboxes to allow fungal delivery to a higher proportion of the mouse population and by deploying nestboxes in an area with lower mammalian diversity, such as a suburban landscape.  相似文献   

19.
Tick-host-pathogen interactions in Lyme borreliosis   总被引:1,自引:0,他引:1  
Borrelia burgdorferi, the spirochetal agent of Lyme borreliosis, is predominantly transmitted by Ixodes ticks. Spirochetes have developed many strategies to adapt to the different environments that are present in the arthropod vector and the vertebrate host. This review focuses on B. burgdorferi genes that are preferentially expressed in the tick and the vertebrate host, and describes how selected gene products facilitate spirochete survival throughout the enzootic life cycle. Interestingly, B. burgdorferi also enhances expression of specific Ixodes scapularis genes, such as TROSPA and salp15. The importance of these genes and their products for B. burgdorferi survival within the tick, and during the transmission process, will also be reviewed. Moreover, we discuss how such vector molecules could be used to develop vector-antigen-based vaccines to prevent the transmission of B. burgdorferi and, potentially, other arthropod-borne microbes.  相似文献   

20.
Survival of Borrelia burgdorferi in ticks and mammals is facilitated, at least in part, by the selective expression of lipoproteins. Outer surface protein (Osp) A participates in spirochete adherence to the tick gut. As ospB is expressed on a bicistronic operon with ospA, we have now investigated the role of OspB by generating an OspB-deficient B. burgdorferi and examining its phenotype throughout the spirochete life cycle. Similar to wild-type isolates, the OspB-deficient B. burgdorferi were able to readily infect and persist in mice. OspB-deficient B. burgdorferi were capable of migrating to the feeding ticks but had an impaired ability to adhere to the tick gut and survive within the vector. Furthermore, the OspB-deficient B. burgdorferi bound poorly to tick gut extracts. The complementation of the OspB-deficient spirochete in trans, with a wild-type copy of ospB gene, restored its ability to bind tick gut. Taken together, these data suggest that OspB has an important role within Ixodes scapularis and that B. burgdorferi relies upon multiple genes to efficiently persist in ticks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号