首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Borrelia burgdorferi gene expression within the guts of engorging Ixodes scapularis ticks was examined by use of differential immunoscreening and differential expression with a customized amplified library. Fourteen chromosomal genes involved in energy metabolism, substrate transport, and signal transduction and 10 (4 chromosomal and 6 plasmid) genes encoding putative lipoproteins and periplasmic proteins were preferentially expressed in engorging ticks. These data demonstrate a new approach to the global analysis of B. burgdorferi genes that are preferentially expressed within the vector during feeding.  相似文献   

2.
Ixodes scapularis ticks transmit the Lyme disease agent in the United States. Although strong antitick immunity mediates tick rejection by certain vertebrates, only a few Ags have been molecularly characterized. We show that guinea pig vaccination against a secreted tick salivary immunomodulator, sialostatin L2, can lead to decreased feeding ability of I. scapularis nymphs. Increased rejection rate, prolonged feeding time, and apparent signs of inflammation were observed for nymphs attached to vaccinated animals, indicating a protective host immune response. Interestingly, sialostatin L2 humoral recognition does not take place upon repeated tick exposure in control animals, but only in the vaccinated animals that neutralize sialostatin L2 action. Therefore, we demonstrate an essential sialostatin L2 role upon nymphal infestation that can be blocked by vertebrate immunity and propose the discovery of similarly "silent" Ags toward the development of a multicomponent vaccine that will protect against tick bites and the pathogens they transmit.  相似文献   

3.
Prevalence studies of Borrelia burgdorferi and Anaplasma phagocytophilum have been rare for ticks from southwestern Pennsylvania. We collected 325 Ixodes scapularis ticks between 2011 and 2012 from four counties in southwestern Pennsylvania. We tested for the presence of Borrelia burgdorferi and Anaplasma phagocytophilum using PCR. Of the ticks collected from Pennsylvania, B. burgdorferi (causative agent of Lyme disease) was present in 114/325 (35%) and Anaplasma phagocytophilum (causative agent of Human Granulocytic Anaplasmosis) was present in 48/325 (15%) as determined by PCR analysis.  相似文献   

4.
5.
Here we report the ability of the tick Ixodes scapularis, the main vector of Lyme disease in the United States, to actively and specifically affect the host proteolytic activity in the sites of infestation through the release of a cystatin constituent of its saliva. The cystatin presence in the saliva was verified both biochemically and immunologically. We named the protein sialostatin L because of its inhibitory action against cathepsin L. We also show that the proteases it targets, although limited in number, have a prominent role in the proteolytic cascades that take place in the extracellular and intracellular environment. As a result, sialostatin L displays an antiinflammatory role and inhibits proliferation of cytotoxic T lymphocytes. Beyond unraveling another component accounting for the properties of tick saliva, contributing to feeding success and pathogen transmission, we describe a novel tool for studying the role of papain-like proteases in diverse biologic phenomena and a protein with numerous potential pharmaceutical applications.  相似文献   

6.
Liu L  Narasimhan S  Dai J  Zhang L  Cheng G  Fikrig E 《EMBO reports》2011,12(11):1196-1203
Ixodes ticks harbour several human pathogens belonging to the order Rickettsiales, including Anaplasma phagocytophilum, the agent of human anaplasmosis. When ticks feed on A. phagocytophilum-infected mice, the pathogen enters the ticks' gut. The bacteria then migrate from the gut to infect the salivary glands of the ticks and are transmitted to the next host via the saliva. The molecular mechanisms that enable the migration of A. phagocytophilum from the gut to the salivary glands are poorly understood. Here we show that a secreted tick protein, P11, is important in this process. We show that P11 enables A. phagocytophilum to infect tick haemocytes, which are required for the migration of A. phagocytophilum from the gut to the salivary glands. Silencing of p11 impaired the A. phagocytophilum infection of tick haemocytes in vivo and consequently decreased pathogen infection of the salivary glands. In vitro experiments showed that P11 could bind to A. phagocytophilum and thus facilitate its infection of tick cells. This report provides new insights into A. phagocytophilum infection of ticks and reveals new avenues to interrupt the life cycle of Anaplasma and related Rickettsial pathogens.  相似文献   

7.
8.
The alternative pathway of complement is an important defense against pathogens and in tick rejection reactions. The tick Ixodes scapularis is able to feed repeatedly on its natural host and has a salivary anticomplement activity that presumably facilitates feeding. In this study, we purified and then obtained the amino-terminal sequence of the I. scapularis salivary anticomplement (Isac). We found a full-length clone coding for Isac by random screening of a salivary gland cDNA library. Expressing Isac cDNA in COS cells reproduced the activity found in tick saliva, namely, inhibition of rabbit erythrocyte lysis by human serum in the presence of Mg(2+) and EGTA, inhibition of C3b binding to agarose in the presence of Mg(2+) and EGTA, and acceleration of factor Bb uncoupling from the C3 convertase generated by the alternative pathway. Recombinant Isac had no effect on the recalcification time of human platelet-poor plasma or in the classical complement pathway, indicating that it is a specific inhibitor similar to the regulators of complement activation of the alternative pathway such as factor H. Isac, however, has no similarity to any protein in the GenBank(TM) data base, indicating that it is a novel and relatively small (18.5 kDa) anticomplement molecule.  相似文献   

9.
Thirty-five strains of the Lyme disease spirochete Borrelia burgdorferi sensu lato (B. burgdorferi s. l.) were isolated from the blacklegged tick vector Ixodes scapularis in South Carolina, Georgia, Florida, and Rhode Island. They were characterized by PCR-restriction fragment length polymorphism (RFLP) analysis of rrf (5S)-rrl (23S) intergenic spacer amplicons. PCR-RFLP analysis indicated that the strains represented at least 3 genospecies (including a possible novel genospecies) and 4 different restriction patterns. Thirty strains belonged to the genospecies B. burgdorferi sensu stricto (B. burgdorferi s. s.), 4 southern strains were identified as B. bissettii, and strain SCCH-5 from South Carolina exhibited MseI and DraI restriction patterns different from those of previously reported genospecies. Complete sequences of rrf-rrl intergenic spacers from 14 southeastern and northeastern strains were determined and the phylogenetic relationships of these strains were compared. The 14 strains clustered into 3 separate lineages on the basis of sequence analysis. These results were confirmed by phylogenetic analysis based on 16S rDNA sequence analysis.  相似文献   

10.
Tick salivary glands are important organs that enable the hematophagous feeding of the tick. We previously described the innervation of the salivary gland acini types II and III by a pair of protocerebral salivary gland neurons that produce both myoinhibitory peptide (MIP) and SIFamide (?imo et al., 2009b). In this study we identified authentic receptors expressed in the salivary glands for these neuropeptides. Homology-based searches for these receptors in the Ixodes scapularis genome sequence were followed by gene cloning and functional expression of the receptors. Both receptors were activated by low nanomolar concentrations of their respective ligands. The temporal expression patterns of the two ligands and their respective receptors suggest that the SIFamide signaling system pre-exists in unfed salivary glands, while the MIP system is activated upon initiation of feeding. Immunoreactivity for the SIFamide receptor in the salivary gland was detected in acini types II and III, surrounding the acinar valve and extending to the basal region of the acinar lumen. The location of the SIFamide receptor in the salivary glands suggests three potential target cell types and their probable functions: myoepithelial cell that may function in the contraction of the acini and/or the control of the valve; large, basally located dopaminergic granular cells for regulation of paracrine dopamine; and neck cells that may be involved in the control of the acinar duct and its valve.  相似文献   

11.
In population biology, loop analysis is a method of decomposing a life cycle graph into life history pathways so as to compare the relative contributions of pathways to the population growth rate across species and populations. We apply loop analysis to the transmission graph of five pathogens known to infect the black-legged tick, Ixodes scapularis. In this context loops represent repeating chains of transmission that could maintain the pathogen. They hence represent completions of the life cycle, in much the same way as loops in a life cycle graph do for plants and animals. The loop analysis suggests the five pathogens fall into two distinct groups. Borellia burgdorferi, Babesia microti and Anaplasma phagocytophilum rely almost exclusively on a single loop representing transmission to susceptible larvae feeding on vertebrate hosts that were infected by nymphs. Borellia miyamotoi, in contrast, circulates among a separate set of host types and utilizes loops that are a mix of vertical transmission and horizontal transmission. For B. miyamotoi the main loop is from vertebrate hosts to susceptible nymphs, where the vertebrate hosts were infected by larvae that were infected from birth. The results for Powassan virus are similar to B. miyamotoi. The predicted impacts of the known variation in tick phenology between populations of I. scapularis in the Midwest and Northeast of the United States are hence markedly different for the two groups. All of these pathogens benefit, though, from synchronous activity of larvae and nymphs.  相似文献   

12.
13.
14.
Repeated exposure of rabbits and other animals to ticks results in acquired resistance or immunity to subsequent tick bites and is partially elicited by antibodies directed against tick antigens. In this study we demonstrate the utility of a yeast surface display approach to identify tick salivary antigens that react with tick-immune serum. We constructed an Ixodes scapularis nymphal salivary gland yeast surface display library and screened the library with nymph-immune rabbit sera and identified five salivary antigens. Four of these proteins, designated P8, P19, P23 and P32, had a predicted signal sequence. We generated recombinant (r) P8, P19 and P23 in a Drosophila expression system for functional and immunization studies. rP8 showed anti-complement activity and rP23 demonstrated anti-coagulant activity. Ixodes scapularis feeding was significantly impaired when nymphs were fed on rabbits immunized with a cocktail of rP8, rP19 and rP23, a hall mark of tick-immunity. These studies also suggest that these antigens may serve as potential vaccine candidates to thwart tick feeding.  相似文献   

15.
Ixodes scapularis is the principal tick vector of the Lyme borreliosis agent Borrelia burgdorferi and other tick-borne zoonoses in northeastern North America. The degree of seasonal synchrony of nymphal and larval ticks may be important in influencing the basic reproductive number of the pathogens transmitted by I. scapularis. Because the seasonal phenology of tick vectors is partly controlled by ambient temperature, climate and climate change could shape the population biology of tick-borne pathogens. We used projected monthly normal temperatures, obtained from the second version of the Canadian Coupled Global Climate Model (CGCM2) under emissions scenario A2 of the Intergovernmental Panel on Climate Change for a site in southern Ontario, Canada, to simulate the phenology of I. scapularis in a mathematical model. The simulated seasonal abundance of ticks then determined transmission of three candidate pathogens amongst a population of white-footed mice (Peromyscus leucopus) using a susceptible-infected-recovered (SIR) model. Fitness of the different pathogens, in terms of resilience to changes in tick and rodent mortality, minima for infection duration, transmission efficiency and particularly any additional mortality of rodents specifically associated with infection, varied according to the seasonal pattern of immature tick activity, which was different under the temperature conditions projected for the 2020s, 2050s and 2080s. In each case, pathogens that were long-lived, highly transmissible and had little impact on rodent mortality rates were the fittest. However, under the seasonal tick activity patterns projected for the 2020s and 2050s, the fitness of pathogens that are shorter-lived, less efficiently transmitted, and more pathogenic to their natural hosts, increased. Therefore, climate change may affect the frequency and distribution of I. scapularis-borne pathogens and alter their evolutionary trajectories.  相似文献   

16.
We created a cDNA library from feeding, female Ixodes scapularis ticks and screened the library with a subtracted probe to eliminate most genes common to feeding female and mating male I. scapularis ticks. Four unique genes were identified in this screen. One gene, Is 9, (represented by 16 cDNAs) was more highly expressed in female ticks. This gene encodes a putative glycine-rich protein, which matched a number of glycine-rich proteins including attachment cement proteins from Rhipicephalus appendiculatus. A second gene, Is 10 (represented by one cDNA) was also more highly expressed in female ticks, but did not match any other sequences in the GenBank database. The third gene, Is 11 (represented by one cDNA) was very similar to Drosophila sp. hsp68 and hsp70 genes and was expressed about equally in male and female ticks. The fourth gene, Is 12 (represented by two cDNAs) was also about equally expressed in male and female ticks, and was similar to a salivary gland gene from Ixodes ricinis. This gene also showed limited similarity to some cuticle genes from insects.  相似文献   

17.
We characterized the effects of subolesin and heat shock protein (HSP) expression on Ixodes scapularis Say (Acari: Ixodidae) stress responses to heat shock and feeding, questing behaviour and Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae) infection. Ticks and cultured tick cells were analysed before and after subolesin, hsp20 and hsp70 gene knock-down by RNA interference. The results of these studies confirm that HSPs are involved in the tick cell response to heat stress and that subolesin and HSPs are both involved in the tick response to blood-feeding stress and A. phagocytophilum infection. Subolesin and hsp20 are involved in the tick protective response to A. phagocytophilum infection and hsp70 expression may be manipulated by the pathogen to increase infectivity. Importantly, these results demonstrate that subolesin, hsp20 and hsp70 expression also affect tick questing behaviour. Overall, this research demonstrates a relationship between hsp and subolesin expression and tick stress responses to heat shock and blood feeding, A. phagocytophilum infection and questing behaviour, thereby extending our understanding of the tick-host-pathogen interface.  相似文献   

18.
Previous epidemiological studies allowed us to accurately define endemic areas of canine babesiosis and tick distribution in southeastern France (Martinod, 1983). Using a micro-ELISA test 100 dogs sera were tested with 3 antigens: Babesia canis, Dermacentor reticulatus and Ixodes ricinus. Antibodies against B. canis and its vector D. reticulatus were detected in an endemic area, sometimes with high levels (optical density 1.38 and 0.80 respectively). A correlation factor and regression lines were found between ELISA activity of B. canis and vector tick antigens, even for dogs which never showed any babesiosis symptoms. These results were compared with those of an area without any babesiosis. Furthermore I. ricinus antigens detected ELISA activity in sera of dogs; some cross reactions were observed between I. ricinus and D. reticulatus antigen.  相似文献   

19.
A study of the morphology and histochemistry of the salivary glands of the parasitic stages of Boophilus microplus has been made, glands of feeding females being studied in greatest detail. Of 9 granular cell types present in the female and 10 in the male, 3 probably secrete attachment cement and 4 others glycoproteins and enzymes, possible functions of which are discussed. Two cell types, c4 and g (the latter being present only in males) are of unknown function. The most likely functions of non-granular epithelial cells and those forming acinus I are in osmoregulation.  相似文献   

20.
Qiu WG  Dykhuizen DE  Acosta MS  Luft BJ 《Genetics》2002,160(3):833-849
Over 80% of reported cases of Lyme disease in the United States occur in coastal regions of northeastern and mid-Atlantic states. The genetic structure of the Lyme disease spirochete (Borrelia burgdorferi) and its main tick vector (Ixodes scapularis) was studied concurrently and comparatively by sampling natural populations of I. scapularis ticks along the East Coast from 1996 to 1998. Borrelia is genetically highly diverse at the outer surface protein ospC. Since Borrelia is highly clonal, the ospC alleles can be used to define clones. A newly designed reverse line blotting (RLB) assay shows that up to 10 Borrelia clones can infect a single tick. The clone frequencies in Borrelia populations are the same across the Northeast. On the other hand, I. scapularis populations show strong regional divergence (among northeastern, mid-Atlantic, and southern states) as well as local differentiation. The high genetic diversity within Borrelia populations and the disparity in the genetic structure between Borrelia and its tick vector are likely consequences of strong balancing selection on local Borrelia clones. Demographically, both Borrelia and I. scapularis populations in the Northeast show the characteristics of a species that has recently expanded from a population bottleneck. Major geological and ecological events, such as the last glacial maximum (18,000 years ago) and the modern-day expansion of tick habitats, are likely causes of the observed "founder effects" for the two organisms in the Northeast. We therefore conclude that the genetic structure of B. burgdorferi has been intimately shaped by the natural history of its main vector, the northern lineage of I. scapularis ticks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号