首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Atlantic sea scallops, Placopecten magellanicus, in most areas of the Bay of Fundy, New Brunswick, Canada, have year-round concentrations of paralytic shellfish posioning (PSP) toxins greater than the regulatory concentration of 80 μg STX eq. 100 g−1 wet weight. Scallops (mean shell height of 10.7 cm, age 3–5 years) were collected by SCUBA and individually tagged near Parker Island, Bay of Fundy. Half were hung 2 m below the low tide water level and the remainder were placed on the bottom (11 m depth at low tide) under the scallops held at 2 m. Scallop, water and sediment samples were collected monthly for determination of concentrations of PSP toxins and Alexandrium fundyense.In October, 1993, mean concentrations of PSP toxins in digestive gland, and mantle were 3205 and 1018 μg STX eq. 100 g−1 wet weight, respectively. Eight months later (June 1994), PSP concentrations in digestive glands from the surface and bottom had declined to 504 and 682 μg STX eq. 100 g−1 wet weight, respectively, whereas those in the mantle had declined to 802 and 681 μg STX eq. 100 g−1 wet weight. During July 1994, A. fundyense concentrations observed at Parker Island and offshore were 320 cells l−1 and 14,200 cells l−1, respectively. Subsequently, toxin concentrations in surface and bottom scallop digestive glands increased to 12,720 and 11,408 μg STX eq. 100 g−1 wet weight, whereas concentrations in mantles increased to 2126 and 1748 μg STX eq. 100 g−1 wet weight, respectively. Concentrations of PSP toxins in these tissues in October 1994 were similar to those measured in October 1993. Concentrations of PSP toxin were less than the regulatory concentration in the gonads and non-detectable in adductor muscles of all scallops sampled.There were no statistically significant differences in profiles for uptake and depuration of PSP toxins in scallops held at the surface compared to those from bottom, suggesting that A. fundyense cysts at the concentrations found in the sediment (45 cysts cm−3) did not contribute significantly to the year-round presence of PSP toxins within scallop tissues. The year-round occurrence of PSP toxin is probably due to accumulation during summer blooms followed by a very slow rate of depuration.  相似文献   

2.
An experiment was conducted to follow the fate of the cyanobacterial toxin, nodularin, produced by Nodularia spumigena through ingestion by Mytilus edulis and re-ingestion of faecal material (coprophagy). Mussels were fed with cultures of N. spumigena, and the faeces that were produced were fed to other mussels not previously exposed to N. spumigena. Concentrations of nodularin were measured in the food (N. spumigena), the mussels and in the faeces in order to make a toxin budget. High concentrations of nodularin were found in the mussels and their faeces after 48 h incubation with N. spumigena. When the toxic faeces were fed to new mussels, the toxin content of faeces was reduced from 95 μg nod g−1 dry weight (DW) to 1 μg nod g−1 DW through the process of coprophagy. Hence, when toxic faeces were fed to mussels, the nodularin concentration of the resulting faecal material was reduced by 99%. Pseudofaeces were produced when the mussels were grazing on N. spumigena, but not when grazing on faeces. The pseudofaeces contained high concentrations of nodularin and apparently intact N. spumigena cells. However, these cells were growth-inhibited and their potential contribution to seeding a bloom is probably limited. Our data indicate that a large fraction of ingested nodularin in M. edulis is egested with the faeces, and that the concentration of nodularin in the faeces is reduced when faeces are re-ingested.  相似文献   

3.
The phytoplankton communities and the production of cyanobacterial toxins were investigated in two alkaline Kenyan crater lakes, Lake Sonachi and Lake Simbi. Lake Sonachi was mainly dominated by the cyanobacterium Arthrospira fusiformis, Lake Simbi by A. fusiformis and Anabaenopsis abijatae. The phytoplankton biomasses measured were high, reaching up to 3159 mg l−1 in L. Sonachi and up to 348 mg l−1 in L. Simbi. Using HPLC techniques, one structural variant of the hepatotoxin microcystin (microcystin-RR) was found in L. Sonachi and four variants (microcystin-LR, -RR, -LA and -YR) were identified in L. Simbi. The neurotoxin anatoxin-a was found in both lakes. To our knowledge this is the first evidence of cyanobacterial toxins in L. Sonachi and L. Simbi. Total microcystin concentrations varied from 1.6 to 12.0 μg microcystin-LR equivalents g−1 DW in L. Sonachi and from 19.7 to 39.0 μg microcystin-LR equivalents g−1 DW in L. Simbi. Anatoxin-a concentrations ranged from 0.5 to 2.0 μg g−1 DW in L. Sonachi and from 0 to 1.4 μg g−1 DW in L. Simbi. In a monocyanobacterial strain of A. fusiformis, isolated from L. Sonachi, microcystin-YR and anatoxin-a were produced. The concentrations found were 2.2 μg microcystin g−1 DW and 0.3 μg anatoxin-a g−1 DW. This is the first study showing A. fusiformis as producer of microcystins and anatoxin-a. Since A. fusiformis occurs in mass developments in both lakes, a health risk for wildlife can be expected.  相似文献   

4.
Domoic acid (DA), the toxin responsible for amnesic shellfish poisoning (ASP) can accumulate in king scallop Pecten maximus leading to extensive fishery closures. Approximately 59% of the total value of all fish and shellfish landed in the Isle of Man in 2004 comprised king scallop, hence the economy of the Manx marine sector is particularly susceptible to impacts from this biotoxin. Scallop from fishing grounds around the Isle of Man were sampled in October 2003, June 2004 and October 2004 to determine levels of inter-animal and spatial variability in DA concentration and factors that might influence toxin concentration such as scallop size and water depth. Mean DA concentrations in hepatopancreas ranged from 296.3 μg g−1 to below the detection limit, in gonad from 27.8 μg g−1 to below the limit of detection and in adductor muscle from 7.3 μg g−1 to below the limit of detection. High levels of inter-animal variability of DA concentration in hepatopancreas were recorded; CVs ranging from 16.1% to 70.0%. DA concentrations above 20 μg g−1 were recorded in gonads on all three sampling dates. Scallops from fishing grounds on the east of the Isle of Man were significantly less contaminated than those from the west and southwest. A significant positive correlation between DA concentration and shell length was recorded in some sites, but there was no relationship with water depth. The high inter-animal, spatial and seasonal variability in toxin concentration highlighted the importance of understanding field variability for the development of reliable sampling and management protocols.  相似文献   

5.
We have studied Picea glauca (white spruce) endophyte colonization and its affect on the growth of Choristoneura fumiferana (spruce budworm). Here we examine the spread and persistence of a rugulosin-producing endophyte and rugulosin in needles from trees maintained in the nursery, as well as in trees planted in a test field site. Additionally, we report toxicity of rugulosin against three P. glauca needle herbivores: C. fumiferana, Lambdina fiscellaria (hemlock looper) and Zeiraphera canadensis (spruce budmoth). Reduction in body weight for both the C. fumiferana and L. fiscellaria were observed at 25 and 50 μm, respectively, and head capsules were reduced at 100 and 150 μm. Z. canadensis larvae did not perform as well in tests due to an Aspergillus fumigatus infection, but were shown to be lighter when tested with 100 and 150 μm compared with controls. The endophyte and its toxin were shown to spread throughout the nursery-grown seedlings. After 3.5 and 4.5 y post-inoculation (one and two years in the test site), the inoculated endophyte and its toxin had remained present with an average rugulosin concentration of 1 μg g−1.  相似文献   

6.
Lyngbya wollei (Farlow ex Gomont) Speziale and Dyck is a common mat-forming benthic cyanobacterium from freshwater habitats. We found that two populations from southeast Queensland (Australia) produce the potent cyanotoxin cylindrospermopsin (CYN) and its analogue, deoxy-cylindrospermopsin (deoxy-CYN). The highest concentrations in environmental samples were 20 and 550 μg g−1 dry weight for CYN and deoxy-CYN, respectively. A sub-sample maintained in culture for over 16 months yielded concentrations of 33 and 308 μg g−1 dry weight for CYN and deoxy-CYN, respectively. The concentration of deoxy-CYN in L. wollei was 10–300 times higher than CYN, suggesting that, unlike many other CYN-producing cyanobacteria, the primary compound produced by L. wollei is deoxy-CYN. The production of CYN and deoxy-CYN by L. wollei represents a potential human health risk and an additional source of these toxins in freshwaters. This is the first report of the production of CYN and deoxy-CYN by L. wollei or any species of the Oscillatoriales.  相似文献   

7.
Potentially toxic cyanobacterial blooms are becoming common in the Brazilian reservoirs in all regions of the country. During October 2004, a dense bloom of cyanobacteria occurred in the Monjolinho Reservoir (São Carlos, São Paulo State, Brazil) and a significant amount of cyanobacterial material accumulated on the water surface. Phytoplankton analysis showed that the main species in this bloom were Anabaena circinalis and Anabaena spiroides. Cladoceran (Ceriodaphnia dubia and Ceriodaphnia silvestrii) and mouse bioassays were performed to detect toxic products in extracts of the natural samples collected at the three different dates during in short period. To prepare the extracts, freeze-dried cells were dispersed in distilled water and subjected to repeated freeze/thaw cycles and sonication and centrifuging processes. Crude extracts were toxic both to cladocerans (LC50 94–406 mg freeze-dried cells L−1) and mice (indicative LD50 297–445 mg freeze-dried cells kg−1) and the toxicity of the bloom increased for cladocerans during the occurrence of the bloom. Toxin analysis by ELISA revealed that microcystin (MC) was found in the water of the reservoir (concentrations ranging from 28 to 45 μg L−1). In addition, microcystin was also found in freeze-dried cyanobacteria cells with concentrations ranging from 138 to 223 μg g−1. On the other hand, neurotoxins (saxitoxin and gonyautoxin) were not detected in any of the natural samples by HPLC. Signs of toxicity in mice did not indicate whether the bloom samples were predominantly hepatotoxic or neurotoxic. It is known that natural Anabaena blooms can contain other toxic compounds besides microcystins and neurotoxins such as lipopolysaccharides or other toxins not identified or known. Methods of detecting cyanotoxins used in this study were insufficient to clarify the toxicological features of Anabaena bloom and indicated that other methods should be investigated.  相似文献   

8.
The protozoan parasites Giardia duodenalis and Cryptosporidium parvum are common causes of diarrhoea, worldwide. Effective drug treatment is available for G. duodenalis, but with anecdotal evidence of resistance or reduced compliance. There is no effective specific chemotherapeutic intervention for Cryptosporidium. Recently, there has been renewed interest in the antimicrobial properties of berries and their phenolic compounds but little work has been done on their antiparasitic actions. The effect of various preparations of blueberry (Vaccinium myrtillus) extract on G. duodenalis trophozoites and C. parvum oocysts were investigated. Pressed blueberry extract, a polyphenolic-rich blueberry extract, and a commercially produced blueberry drink (Bouvrage) all demonstrated antigiardial activity. The polyphenol-rich blueberry extract reduced trophozoite viability in a dose dependent manner. At 167 μg ml−1, this extract performed as well as all dilutions of pressed blueberry extract and the Bouvrage beverage (9.6 ± 2.8% live trophozoites remaining after 24 h incubation). The lowest dilution of blueberry extract tested (12.5% v/v) contained >167 μg ml−1 of polyphenolic compounds suggesting that polyphenols are responsible for the reduced survival of G. duodenalis trophozoites. The pressed blueberry extract, Bouvrage beverage and the polyphenolic-rich blueberry extract increased the spontaneous excystation of C. parvum oocysts at 37 °C, compared to controls, but only at a dilution of 50% Bouvrage beverage, equivalent to 213 μg ml−1 gallic acid equivalents in the polyphenolic-rich blueberry extract. Above this level, spontaneous excystation is decreased. We conclude that water soluble extracts of blueberries can kill G. duodenalis trophozoites and modify the morphology of G. duodenalis and C. parvum.  相似文献   

9.
Field and laboratory experiments were designed to determine the differential growth and toxin response to inorganic and organic nitrogen additions in Pseudo-nitzschia spp. Nitrogen enrichments of 50 μM nitrate (KNO3), 10 μM ammonium (NH4Cl), 20 μM urea and a control (no addition) were carried out in separate carboys with seawater collected from the mouth of the San Francisco Bay (Bolinas Bay), an area characterized by high concentrations of macronutrients and iron. All treatments showed significant increases in biomass, with chlorophyll a peaking on days 4–5 for all treatments except urea, which maintained exponential growth through the termination of the experiment. Pseudo-nitzschia australis Frenguelli abundance was 103 cells l−1 at the start of the experiment and increased by an order of magnitude by day 2. Particulate domoic acid (pDA) was initially low but detectable (0.15 μg l−1), and increased throughout exponential and stationary phases across all treatments. At the termination of the experiment, the urea treatment produced more than double the amount of pDA (9.39 μg l−1) than that produced by the nitrate treatment (4.26 μg l−1) and triple that of the control and ammonium treatments (1.36 μg l−1 and 2.64 μg l−1, respectively). The mean specific growth rates, calculated from increases in chlorophyll a and from cellular abundance of P. australis, were statistically similar across all treatments.These field results confirmed laboratory experiments conducted with a P. australis strain isolated from Monterey Bay, CA (isolate AU221-a) grown in artificial seawater enriched with 50 μM nitrate, 50 μM ammonium or 25 μM of urea as the sole nitrogen source. The exponential growth rate of P. australis was significantly slower for cells grown on urea (ca. 0.5 day−1) compared to the cells grown on either nitrate or ammonium (ca. 0.9 day−1). However the urea-grown cells produced more particulate and dissolved domoic acid (DA) than the ammonium- or nitrate-grown cells. The field and laboratory experiments demonstrate that P. australis is able to grow effectively on urea as the primary source of nitrogen and produced more pDA when grown on urea in both natural assemblages and unialgal cultures. These results suggest that the influence of urea from coastal runoff may prove to be more important in the development or maintenance of toxic blooms than previously thought, and that the source of nitrogen may be a determining factor in the relative toxicity of west coast blooms of P. australis.  相似文献   

10.
Sublethal effects in the aquatic snail Melanoides tuberculata were examined during exposure to whole cell extracts of Cylindrospermopsis raciborskii and live C. raciborskii cultures, containing varying concentrations of algal cells, cellular debris, and the blue-green algal toxin, cylindrospermopsin (CYN). Exposure to whole cell extracts or live algal cultures did not result in significant changes in adult snail behaviour or relative growth rates. However, clear changes in the number of hatchlings released from parent snails were observed. Exposure to whole cell extracts containing ≥200 μg L−1 extracellular CYN resulted in an increase in the number of hatchlings. In contrast, decreases in hatchling number were recorded from treatments containing ≥200 μg L−1 CYN during exposures to live C. raciborskii cultures, compared with controls. This suggests that CYN may be more toxic to grazing invertebrates if present in the intracellular form. Since CYN is a protein synthesis inhibitor, it is possible that CYN may be especially toxic to rapidly developing tissues such as snail embryos. This may also explain the lack of effects observed in adult snails.  相似文献   

11.
Yessotoxin (YTX) was detected in an algal sample and two mussel samples (0.07–0.10 μg g−1) collected from Scripps Pier in La Jolla, California during a bloom of Lingulodinium polyedrum. Mussel samples collected from Monterey Bay, California also contained measurable YTX (levels up to 0.06 μg g−1) in samples obtained during a 6-month (weekly) sampling period. Gonyaulax spinifera and L. polyedrum were identified in background concentrations in Monterey Bay during the time of contamination. An algal sample from Washington coastal waters collected during non-bloom conditions also contained YTX, possibly originating from Protoceratium reticulatum.Three strains of L. polyedrum (CCMP1931, CCMP1936, 104A) isolated from southern California coastal waters and one strain of G. spinifera (CCMP409) isolated from Maine were tested for YTX production using two methods, competitive ELISA and liquid chromatography–mass spectrometry (LC–MS). The ELISA method detected YTX in the particulate phase in two of three L. polyedrum strains. The LC–MS method did not detect YTX in the particulate or dissolved phase of any of the strains.To our knowledge, this is the first study to test and confirm YTX in environmental samples from California and Washington coastal waters. It is highly likely that L. polyedrum was responsible for the YTX contamination in the southern California samples. Future research needs to conclusively determine the biological origin(s) of YTX contamination in central California and Washington coastal waters.  相似文献   

12.
We studied the seasonal variation on aerobic metabolism and the response of oxidative stress parameters in the digestive glands of the subpolar limpet Nacella (P.) magellanica. Sampling was carried out from July (winter) 2002 to July 2003 in Beagle Channel, Tierra del Fuego, Argentina. Whole animal respiration rates increased in early spring as the animals spawned and remained elevated throughout summer and fall (winter: 0.09 ± 0.02 μmol O2 h− 1 g− 1; summer: 0.31 ± 0.06 μmol O2 h− 1 g− 1). Oxidative stress was assessed at the hydrophilic level as the ascorbyl radical content / ascorbate content ratio (A / AH). The A / AH ratio showed minimum values in winter (3.7 ± 0.2 10− 5 AU) and increased in summer (18 ± 5 10− 5 AU). A similar pattern was observed for lipid radical content (122 ± 29 pmol mg− 1 fresh mass [FW] in winter and 314 ± 45 pmol mg− 1 FW in summer), iron content (0.99 ± 0.07 and 2.7 ± 0.6 nmol mg− 1 FW in winter and summer, respectively) and catalase activity (2.9 ± 0.2 and 7 ± 1 U mg− 1 FW in winter and summer, respectively). Since nitrogen derived radicals are thought to be critically involved in oxidative metabolism in cells, nitric oxide content was measured and a significant difference in the content of the Fe–MGD–NO adduct in digestive glands from winter and summer animals was observed. Together, the data indicate that both oxygen and nitrogen radical generation rates in N. (P.) magellanica are strongly dependent on season.  相似文献   

13.
Over the past decade diatom blooms of domoic acid (DA)-producing Pseudo-nitzschia spp. have been responsible for numerous marine mammal and bird mortalities in Monterey Bay, CA. One possible toxin vector is the market squid, Loligo opalescens, a small pelagic mollusk that plays an important role in the near-shore food web of the California Current ecosystem as a favored vertebrate prey species. This study examined the trophic link between toxic Pseudo-nitzschia and L. opalescens using toxin and stomach content analyses of animals collected from Monterey Bay, CA in 2000. Receptor binding assay data (confirmed by tandem mass spectrometry), demonstrated the presence of DA in squid during a toxic Pseudo-nitzschia event, with P. australis frustules observed in stomach samples. Though DA levels were low (<0.5 μg DA g−1 tissue) in L. opalescens during the study period, it is now clear that this potent neurotoxin can occur in squid and is likely delivered through its krill prey species, which are known to retain DA after feeding on toxic Pseudo-nitzschia. Our findings suggest that further study of the relationship between Pseudo-nitzschia blooms and DA contamination of squid is warranted to better evaluate the potential health risk to humans and wildlife associated with this major commercial seafood species and important prey item.  相似文献   

14.
Seasonal changes of field populations and growth rates of two dinoflagellates, Ceratium furca and Ceratium fusus, were examined in the temperate coastal water of Sagami Bay, Japan. Weekly field sampling was conducted from August 2002 to August 2003, and laboratory experiments were also carried out to investigate effects of temperature, irradiance and photoperiod on the growth rates of these two Ceratium species. In the field, the abundances of both species increased significantly from April to August 2003, were gradually decreased from November 2002 and were not observed in January 2003. C. fusus was able to increase at lower temperatures in February 2003 compared to C. furca. In the laboratory, the two species did not grow at <10 °C or >32 °C. The highest specific growth rate of C. furca was 0.72 d−1 at 24 °C and 600 μmol m−2 s−1. Optimum growth rates (>0.4 d−1) of C. furca were observed at temperatures from 18 to 28 °C and at irradiances from 216 to 796 μmol m−2 s−1. The highest growth rate of C. fusus was 0.56 d−1 at 26 °C and 216 μmol m−2 s−1. Optimum growth rates of C. fusus were observed at the same irradiance rage of C. furca, whereas optimum temperature range was narrower (26–28 °C). The growth curves of both species indicated saturation of the growth rates when light intensity was above 216 μmol m−2 s−1, and did not show photoinhibition at irradiances up to 796 μmol m−2 s−1. The specific growth rates of both Ceratium species were clearly decreased at L:D = 10:14 relative to those at L:D = 14:10 and L:D = 12:12. The present study indicates the two Ceratium species can adapt to a wide range of temperature and irradiance.  相似文献   

15.
The toxins associated with paralytic shellfish poisoning (PSP) are potent neurotoxins produced by natural populations of the marine dinoflagellate Alexandrium tamarense. In early June 2000, a massive bloom (>7×105 cells l−1) of this dinoflagellate coincided with an unusually high mortality of farmed salmon in sea cages in southeastern Nova Scotia. Conditions in the water column in the harbour were characterised by the establishment of a sharp pycnocline after salinity stratification due to abundant freshwater runoff. In situ fluorescence revealed a high sub-surface (2–4 m depth) chlorophyll peak related to the plankton bloom. The intense bloom was virtually monospecific and toxicity was clearly related to the concentration of Alexandrium cells in plankton size fractions. Cultured clonal isolates of A. tamarense from the aquaculture sites were very toxic on a per cell basis and yielded a diversity of PSP toxin profiles, some of which were similar to those from plankton concentrates from the natural bloom population. The toxin profile of plankton concentrates from the 21–56 μm size fraction was complex, dominated by the N-sulfocarbamoyl derivative C2, with levels of other PSP toxins GTX4, NEO, GTX5 (=B1), GTX3, GTX1, STX, C1, and GTX2, in decreasing order of relative abundance. Although no PSP toxin was found systemically in the fish tissues (liver, digestive tract) from this salmon kill event, the detection of Alexandrium cells and low levels of PSP toxins in salmon gills provide evidence that the enhanced mortalities were caused by direct exposure to toxic Alexandrium cells and/or to soluble toxins released during the bloom.  相似文献   

16.
Medium-chain-length polyhydroxyalkanoates (MCL-PHAs) were produced in carbon-limited, single-stage, fed-batch fermentations of Pseudomonas putida KT2440 by co-feeding nonanoic acid (NA) and glucose (G) to enhance the yield of PHA from NA. An exponential (μ = 0.25 h−1) followed by a linear feeding strategy at a NA:G ratio of 1:1 (w/w) achieved 71 g l−1 biomass containing 56% PHA. Although the same overall PHA productivity (1.44 g l−1 h−1) was obtained when NA alone was fed at the same specific growth rate, the overall yield of PHA from NA increased by 25% (0.66 g PHA g NA−1 versus 0.53 g g−1) with glucose co-feeding. Further increasing glucose in the feed (NA:G = 1:1.5) resulted in a slightly higher yield (0.69 g PHA g NA−1) but lower PHA content (48%) and productivity (1.16 g l−1 h−1). There was very little change in the PHA composition.  相似文献   

17.
Red tide blooms of Cochlodinium polykrikoides in a coastal cove   总被引:1,自引:0,他引:1  
Successive blooms of the dinoflagellate Cochlodinium polykrikoides occurred in Pettaquamscutt Cove, RI, persisting from September through December 1980 and again from April through October 1981. Cell densities varied from <100 cells L−1 at the onset of the bloom and reached a maximum density exceeding 3.4 × 106 cells L−1 during the summer of 1981. The bloom was mainly restricted to the mid to inner region of this shallow cove with greatest concentrations localized in surface waters of the southwestern region during summer/fall periods of both years. Highly motile cells consisting of single, double and multiple cell zooids were found as chains of 4 and 8 cells restricted to the late August/September periods. The highest cell densities occurred during periods when annual temperatures were between 19 and 28 °C and salinities between 25 and 30. A major nutrient source for the cove was Crying Brook, located at the innermost region at the head of the cove. Inorganic nitrogen (NH3 and NO2 + NO3) from the brook was continually detectable throughout the study with maximum values of 57.5 and 82.5 μmol L−1, respectively. Phosphate (PO4-P) was always present in the source waters and rarely <0.5 μmol L−1; silicate always exceeded 30 μmol L−1 with maximum concentrations reaching 226 μmol L−1. Chlorophyll a and ATP concentrations during the blooms varied directly with cell densities. Maximum Chl a levels were 218 mg m−3 and ATP-carbon was >20 g C m−3. Primary production by the dinoflagellate-dominated community during the bloom varied between 4.3 and 0.07 g C m−3 d−1. Percent carbon turnover calculated from primary production values and ATP-carbon varied from 6 to 129% d−1. The dinoflagellates dominated the entire summer period; other flagellates and diatoms were present in lesser amounts. A combination of low washout rate due to the cove dynamics, active growth, and life cycles involving cysts allowed C. polykrikoides to maintain recurrent bloom populations in this area.  相似文献   

18.
Species identification of the common filamentous green alga Spirogyra is mainly based on the conjugation process and zygospores. However, this genus is mostly found in its vegetative stage, which complicates studies on the ecological demands for individual species. We therefore used a different approach by assessing the relationship between vegetative Spirogyra filament type groups (morphotypes) and environmental conditions (mainly ions, nutrients, light supply and water temperature). Sampling was done at 133 sites in Central Europe and in total 333 different filament types were classified. Spirogyra was found at pH values between 6.2 and 9.1, while total alkalinity ranged from 0.6 to 7.9 mequiv l−1. The genus is colonizing habitats with a specific conductivity between 75 and 1500 μS cm−1. Total phosphorus amounts varied between 1 and 2240 μg l−1 with a median value of 34 μg l−1, indicating meso- to eutrophic conditions as optimal growth range. Filament type grouping by means of cluster analysis was based on cell cross walls (plane or replicate), average cell widths and average chloroplast numbers and resulted in 10 groups with plane cross walls and three with replicate cross walls. Canonical correspondence analysis revealed nutrients to be the key factor for morphotype occurrence: filaments with increased cell widths preferred elevated nutrient conditions. Other environmental variables (ions, buffer capacity, light supply and water temperature) had no significant effects on morphotype occurrence.  相似文献   

19.
Canna indica L. is an upright perennial rhizomatous herb, and Schoenoplectus validus (Vahl) A. Löve and D. Löve is a tall, perennial, herbaceous sedge. The nutrient uptake kinetics of C. indica and S. validus were investigated using the modified depletion method after plants were grown for 4 weeks in simulated secondary-treated wastewater. The maximum uptake rate (Imax) and Michaelis–Menten constant (Km) were estimated by iterative curve fitting. The Imax for NH4N (623 μmol g−1 dry root weight h−1) was significantly higher than that for NO3N (338 μmol g−1 dry root weight h−1) in S. validus. In contrast, no difference was observed in C. indica. The Imax values for NO3N and NH4N were higher in S. validus than in C. indica. A significantly lower Km was detected for NO3N uptake in C. indica (385 μmol L−1) compared to that in S. validus (1908 μmol L−1). The Imax for PO4P did not differ between the plant species. The Km for PO4P was significantly higher in C. indica (157 μmol L−1) than in S. validus (60 μmol L−1). In conclusion, we found that S. validus preferred NH4N over NO3N, had greater capacity for N uptake and higher affinity for PO4P, but C. indica had greater affinity for NO3N. Nutrient uptake capacity is likely related to habitat preference, and is influenced by the structure of roots and rhizomes.  相似文献   

20.
This study assessed the effect of two precursors (l-phenylalanine and p-amino benzoic acid) used alone or in combination with methyl jasmonate, on the growth and accumulation of paclitaxel, baccatin III and 10-deacetylbaccatin III in hairy root cultures of Taxus x media var. Hicksii. The greatest increase in dry biomass was observed after 4 weeks of culturing hairy roots in medium supplemented with 1 μM of l-phenylalanine (6.2 g L−1). Addition of 1 μM of l-phenylalanine to the medium also resulted in the greatest 10-deacetylbaccatin III accumulation (422.7 μg L−1), which was not detected in the untreated control culture. Supplementation with 100 μM of l-phenylalanine together with 100 μM of methyl jasmonate resulted in the enhancement of paclitaxel production from 40.3 μg L−1 (control untreated culture) to 568.2 μg L−1, the highest paclitaxel content detected in the study. The effect of p-amino benzoic acid on taxane production was less pronounced, and the highest yield of paclitaxel (221.8 μg L−1) was observed when the medium was supplemented with 100 μM of the precursor in combination with methyl jasmonate.Baccatin III was not detected under the conditions used in this experiment and the investigated taxanes were not excreted into the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号