首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to compare the effects of different warm-up interventions on jump, sprint and agility performance in collegiate soccer players. Twenty-one healthy male college soccer players (age: 20.14 ± 1.65 years; body height: 179.9 ± 8.34 cm; body mass: 74.4 ± 13.0 kg; % body fat: 9.45 ± 4.8) participated in the study. Subjects underwent four different randomized warm-up protocols separated by at least 48 hours. The warm-up schemes were: 1. no conditioning contraction protocol (NCC); 2. dynamic stretching (DS); 3. prolonged intermittent low-intensity isometric exercise (ST); and, 4. ST with an additional external load equal to 30% of body weight (ST + 30% BW). All interventions were preceded by a general warm-up. Results from one-way repeated measures ANOVA demonstrated a significant difference in countermovement jump (CMJ) at F(3,60) = 10.2, ηρ2 = 0.337, p < 0.01. Post hoc analysis revealed a significant difference in CMJ performance in DS when compared to NCC and ST + 30% BW. No significant difference in CMJ was observed between DS and ST. CMJ scores in NCC, ST, and ST + 30% BW were non-significant. There was a significant difference in speed; F(3, 60) = 6.61, ηρ2 = 0.248, p < 0.01. Post hoc analysis revealed significantly better time in DS than NCC and ST. However, no difference in speed was observed between DS and ST + 30% BW. Similarly, speed was similar in NCC, ST and ST + 30% BW. A significant difference in agility performance was also observed; F(3, 60) = 24.1, ηρ2= 0.546, p < 0.01. Post hoc analysis revealed significantly greater performance gains in DS than NCC. No significant difference in agility was observed in DS, ST and ST + 30% BW. In conclusion, a prolonged intermittent low-intensity isometric protocol using bodyweight only showed similar benefits with dynamic stretching in countermovement jump performance. When the same isometric condition with additional load equal to 30% of bodyweight was applied, effects in speed and agility were similar to dynamic stretching.  相似文献   

2.
Maki M  Yamashiro T  Matsumura S 《Heredity》2003,91(3):300-306
Genetic diversity and genetic differentiation within and among island populations was examined by allozyme electrophoresis in Suzukia luchuensis (Labiatae), which is endemic to four of the Ryukyu Islands, southern Japan, and one island near Taiwan. Intrapopulation allozyme diversity was very low in all the four Ryukyu Islands, probably due to the effects of random drift in small populations. In contrast, genetic diversity at the species level was high, possibly because of an ancient origin of populations and/or multiple colonization of the species on different islands. Genetic differentiation among the overall populations was high (G(ST)=0.863), while gene flow (Nm) as estimated from allozyme frequency data was 0.041, suggesting that its occurrence among populations is highly restricted. Hierarchical analysis of genetic differentiation indicated that a high proportion of the total allelic variance is attributed to variation among islands, corresponding to the fact that several alleles were fixed on only one island. However, intraisland genetic differentiation was small on all islands except Yonaguni Island, where S. luchuensis is relatively widely distributed. Most diversity was thus due to differences among islands.  相似文献   

3.
Aims were to estimate the extent of genetic heterogeneity in environmental variance. Data comprised 99 535 records of 35-day body weights from broiler chickens reared in a controlled environment. Residual variance within dam families was estimated using ASREML, after fitting fixed effects such as genetic groups and hatches, for each of 377 genetically contemporary sires with a large number of progeny (> 100 males or females each). Residual variance was computed separately for male and female offspring, and after correction for sampling, strong evidence for heterogeneity was found, the standard deviation between sires in within variance amounting to 15–18% of its mean. Reanalysis using log-transformed data gave similar results, and elimination of 2–3% of outlier data reduced the heterogeneity but it was still over 10%. The correlation between estimates for males and females was low, however. The correlation between sire effects on progeny mean and residual variance for body weight was small and negative (-0.1). Using a data set bigger than any yet presented and on a trait measurable in both sexes, this study has shown evidence for heterogeneity in the residual variance, which could not be explained by segregation of major genes unless very few determined the trait.  相似文献   

4.
The Effective Size of a Subdivided Population   总被引:22,自引:4,他引:18       下载免费PDF全文
This paper derives the long-term effective size, N(e), for a general model of population subdivision, allowing for differential deme fitness, variable emigration and immigration rates, extinction, colonization, and correlations across generations in these processes. We show that various long-term measures of N(e) are equivalent. The effective size of a metapopulation can be expressed in a variety of ways. At a demographic equilibrium, N(e) can be derived from the demography by combining information about the ultimate contribution of each deme to the future genetic make-up of the population and Wright's F(ST)'s. The effective size is given by N(e) = 1/(1 + var ( &))<(1 - f(STi))/N(i)n>, where n is the number of demes, &(i) is the eventual contribution of individuals in deme i to the whole population (scaled such that σ(i) &(i) = n), and < > denotes an average weighted by &(i)(2). This formula is applied to a catastrophic extinction model (where sites are either empty or at carrying capacity) and to a metapopulation model with explicit dynamics, where extinction is caused by demographic stochasticity and by chaos. Contrary to the expectation from the standard island model, the usual effect of population subdivision is to decrease the effective size relative to a panmictic population living on the same resource.  相似文献   

5.
A comparative study between microsatellite and allozyme markers was conducted on the genetic structure and mating system in natural populations of Euterpe edulis Mart. Three cohorts, including seedlings, saplings, and adults, were examined in 4 populations using 10 allozyme loci and 10 microsatellite loci. As expected, microsatellite markers had a much higher degree of polymorphism than allozymes, but estimates of multilocus outcrossing rate ( = 1.00), as well as estimates of genetic structure (F(IS), G(ST)), were similar for the 2 sets of markers. Estimates of R(ST), for microsatellites, were higher than those of G(ST), but results of both statistics revealed a close agreement for the genetic structure of the species. This study provides support for the important conclusion that allozymes are still useful and reliable markers to estimate population genetic parameters. Effects of sample size on estimates from hypervariable loci are also discussed in this paper.  相似文献   

6.
The Genetic Structure of Admixed Populations   总被引:26,自引:2,他引:24       下载免费PDF全文
J. C. Long 《Genetics》1991,127(2):417-428
  相似文献   

7.
8.
Relating geographic variation in quantitative traits to underlying population structure is crucial for understanding processes driving population differentiation, isolation and ultimately speciation. Our study represents a comprehensive population genetic survey of the yellow dung fly Scathophaga stercoraria, an important model organism for evolutionary and ecological studies, over a broad geographic scale across Europe (10 populations from the Swiss Alps to Iceland). We simultaneously assessed differentiation in five quantitative traits (body size, development time, growth rate, proportion of diapausing individuals and duration of diapause), to compare differentiation in neutral marker loci (F(ST)) to that of quantitative traits (Q(ST)). Despite long distances and uninhabitable areas between sampled populations, population structuring was very low but significant (F(ST) = 0.007, 13 microsatellite markers; F(ST) = 0.012, three allozyme markers; F(ST) = 0.007, markers combined). However, only two populations (Iceland and Sweden) showed significant allelic differentiation to all other populations. We estimated high levels of gene flow [effective number of migrants (Nm) = 6.2], there was no isolation by distance, and no indication of past genetic bottlenecks (i.e. founder events) and associated loss of genetic diversity in any northern or island population. In contrast to the low population structure, quantitative traits were strongly genetically differentiated among populations, following latitudinal clines, suggesting that selection is responsible for life history differentiation in yellow dung flies across Europe.  相似文献   

9.
Genetic variation at 19 allozyme (including 11 polymorphic) and 10 microsatellite loci was examined in the population samples of odd- and even-broodline pink salmon from the southern part of Sakhalin Island, Southern Kuril Islands, and the northern coast of the Sea of Okhotsk. The estimates of relative interpopulation component of genetic variation over the allozyme loci, per broodline, were on average 0.43% (GST), while over the microsatellite loci it was 0.26% (the theta(ST) coefficient, F-statistics based on the allele frequency variance), and 0.90% (the rho(ST) coefficient, R-statistics based on the allele size variance). The values of interlinear component constituted 2.34, 0.31, and 1.05% of the total variation, respectively. Using the allozyme loci, statistically significant intralinear heterogeneity was demonstrated among the regions, as well as among the populations of Southern Sakhalin Island. Multivariate scaling based on the allozyme data demonstrated regional clustering of the sample groups, representing certain populations during the spawning run or in different years. Most of the microsatellite loci examined were found to be highly polymorphic (mean heterozygosity > 0.880). The estimates of interlinear, interregional, and interpopulation variation over these loci in terms of theta(ST) values were substantially lower than in terms of rho(ST) values. Regional genetic differentiation, mostly expressed at the allozyme loci among the populations from the northern and southern parts of the Sea of Okhotsk (i.e., between the Sakhalin and Kuril populations), was less expressed at the microsatellite loci. The differentiation between these regions observed can be considered as the evidence in favor of a large-scale isolation by distance characterizing Asian pink salmon. It is suggested that in pink salmon, low genetic differentiation at neutral microsatellite loci can be explained by extremely high heterozygosity,of the loci themselves, as well as by the migration gene exchange among the populations (the estimate of the genetic migration coefficient inferred from the "private" allele data constituted 2.6 to 3.4%), specifically, by the ancient migration exchange, which occurred during postglacial colonization and colonization of the range.  相似文献   

10.
Analysis of allozyme data of the European freshwater fish Cottus gobio showed marked genetic differentiation across drainage basins in northeastern Bavaria, which points to the existence of at least two cryptic taxa. Genetic variability within populations differed significantly between these two taxa, which could be due to historical (bottlenecks) or ecological reasons (population size). To distinguish between these two hypotheses we sampled 12 distinct populations from Rhine, Elbe and Danube drainages. Using allozyme data we examined the influence of population size and isolation on genetic variability within populations. We used spatial extent of populations (patch size) as a measure for population size. To estimate isolation we calculated a compound measure which took into account patch size and distance to all neighbouring populations. Both patch size and isolation were highly correlated with genetic variability, explaining ≈95% of the variance of genetic variability within populations. Furthermore, analysis of covariance suggests that the difference in genetic variability between taxa may be explained by differences in population size.  相似文献   

11.
Face expressions are a rich source of social signals. Here we estimated the proportion of phenotypic variance in the brain response to facial expressions explained by common genetic variance captured by ∼500,000 single nucleotide polymorphisms. Using genomic-relationship-matrix restricted maximum likelihood (GREML), we related this global genetic variance to that in the brain response to facial expressions, as assessed with functional magnetic resonance imaging (fMRI) in a community-based sample of adolescents (n = 1,620). Brain response to facial expressions was measured in 25 regions constituting a face network, as defined previously. In 9 out of these 25 regions, common genetic variance explained a significant proportion of phenotypic variance (40–50%) in their response to ambiguous facial expressions; this was not the case for angry facial expressions. Across the network, the strength of the genotype-phenotype relationship varied as a function of the inter-individual variability in the number of functional connections possessed by a given region (R2 = 0.38, p<0.001). Furthermore, this variability showed an inverted U relationship with both the number of observed connections (R2 = 0.48, p<0.001) and the magnitude of brain response (R2 = 0.32, p<0.001). Thus, a significant proportion of the brain response to facial expressions is predicted by common genetic variance in a subset of regions constituting the face network. These regions show the highest inter-individual variability in the number of connections with other network nodes, suggesting that the genetic model captures variations across the adolescent brains in co-opting these regions into the face network.  相似文献   

12.
The dusky grouper, Epinephelus marginatus, inhabits coastal reefs in the Mediterranean Sea and Atlantic Ocean. A decline in the abundance of this long-lived protogynous hermaphrodite has led to its listing as an endangered species in the Mediterranean, and heightened management concerns regarding its genetic variability and population substructure. To address these concerns, we analysed genetic variation at seven microsatellite and 28 allozyme loci in dusky groupers sampled from seven areas (for microsatellites) and three areas (for allozymes) in the west-central Mediterranean. Levels of genetic variability were higher for microsatellites than for allozymes (mean H(E) = 0.78 and 0.07, respectively), but similar to those observed in other marine fishes with comparable markers. Both microsatellites and allozymes revealed significant genetic differentiation among all areas analysed with each class of marker, but the magnitude of differentiation revealed by allozymes over three locales (F(ST) = 0.214) was greater than that detected with microsatellites over seven areas, or over the three areas shared with the allozyme analysis (F(ST) = 0.018 and approximately 0, respectively). A large proportion of the allozyme differentiation was due to a single locus (ADA*) possibly influenced by selection, but allozyme differentiation over the three areas was still highly significant (F(ST) = 0.06, P < 0.0001), and the 95% confidence intervals for allozyme and microsatellite F(ST) did not overlap when this locus was excluded. There was no evidence of isolation by distance with either class of markers. Our results lead us to conclude that dusky groupers are not panmictic in the Mediterranean Sea and suggest that they should be managed on a local basis. However, more work is needed to elucidate genetic relationships among populations.  相似文献   

13.
The objective of this study was to search for polymorphisms in the coding region of the estrogen receptors 1 and 2 (ESR1 and ESR2 )and to analyze the effects of these variants and the well known intronic ESR1 Pvu II polymorphism on litter size in a Chinese-European pig line. We identified five silent single nucleotide polymorphisms (SNP) in the ESR1 cDNA: c.669T > C (exon 3), c.1227C > T (exon 5), c.1452C > T (exon 7), c.1665T > C and c.1755A > G (exon 8). One pair of these SNP (c.1665T > C and c.1755A > G) co-segregated in the analyzed line, and the SNP c.669T > C showed the same segregation pattern as the Pvu II polymorphism. These polymorphisms were tested in this study, although the c.1452C > T SNP within exon 7 was not analyzed due to its low informativeness. In the ESR2 cDNA, one missense SNP was found within exon 5, which caused an amino acid substitution in the coded protein: "c.949G > A (p.Val317Met)" and was tested on sow litter size. Information on 1622 litter records from 408 genotyped sows was analyzed to determine whether these SNP influenced the total number of piglets born (TNB) or the number of born alive (NBA). The polymorphisms ESR1: [Pvu II; c.669T > C], ESR1: [c.1665T > C; c.1755A > G] and ESR2: c.949G > A showed no statistically significant association with litter size. However, the ESR1: c.1227T allele was significantly associated with TNB. The additive substitution effect was estimated to be 0.40 piglets born per litter (P < 0.03), and no dominance effects were observed. This SNP could be useful in assisted selection for litter size in some pig lines, as a new genetic marker in linkage disequilibrium with the causative mutation.  相似文献   

14.
R. C. Yang  F. C. Yeh    A. D. Yanchuk 《Genetics》1996,142(3):1045-1052
We employed F-statistics to analyze quantitative and isozyme variation among five populations of Pinus contorta ssp. latifolia, a wind-pollinated outcrossing conifer with wide and continuous distribution in west North America. Estimates of population differentiation (F(ST)) for six quantitative traits were compared with the overall estimate of the differentiation (F*(ST)) from 19 isozymes that tested neutral to examine whether similar evolutionary processes were involved in morphological and isozyme differentiation. While the F(ST) estimates for specific gravity, stem diameter, stem height and branch length were significantly greater than the F*(ST) estimate, as judged from the 95% confidence intervals by bootstrapping, the F(ST) estimates for branch angle and branch diameter were indistinguishable from the F*(ST) estimate. Differentiation in stem height and stem diameter might reflect the inherent adaptation of the populations for rapid growth to escape suppression by neighboring plants during establishment and to regional differences in photoperiod, precipitation and temperature. In contrast, divergences in wood specific gravity and branch length might be correlated responses to population differentiation in stem growth. Possible bias in the estimation of F(ST) due to Hardy-Weinberg disequilibrium (F(IS) & 0), linkage disequilibrium, maternal effects and nonadditive genetic effects was discussed with special reference to P. contorta ssp. latifolia.  相似文献   

15.

Background

Since feed represents 70% of the total cost in poultry production systems, an animal’s ability to convert feed is an important trait. In this study, residual feed intake (RFI) and residual body weight gain (RG), and their linear combination into residual feed intake and body weight gain (RIG) were studied to estimate their genetic parameters and analyze the potential differences in feed intake between the top ranked birds based on the criteria for each trait.

Methods

Phenotypic and genetic analyses were completed on 8340 growing tom turkeys that were measured for feed intake and body weight gain over a four-week period from 16 to 20 weeks of age.

Results

The heritabilities of RG and RIG were 0.19 ± 0.03 and 0.23 ± 0.03, respectively. Residual body weight gain had moderate genetic correlations with feed intake (−0.41) and body weight gain (0.43). All three linear combinations to form the RIG traits had genetic correlations ranging from −0.62 to −0.52 with feed intake, and slightly weaker, 0.22 to 0.34, with body weight gain. Sorted into three equal groups (low, medium, high) based on RG, the most efficient group (high) gained 0.62 and 1.70 kg more (P < 0.001) body weight than that of the medium and low groups, yet the feed intake for the high group was less (P < 0.05) than that of the medium group (19.52 vs. 19.75 kg). When separated into similar partitions, the high RIG group (most efficient) had both the lowest (P < 0.001) feed intake (18.86 vs. 19.57 and 20.41 kg) and the highest (P < 0.001) body weight gain (7.41 vs. 7.03 and 6.43 kg) relative to the medium and low groups, respectively.

Conclusions

The difference in feed intake between the top ranked birds based on different residual feed efficiency traits may be small when looking at the average individual, however, when extrapolated to the production level, the lower feed intake values could lead to significant savings in feed costs over time.  相似文献   

16.
Moyle LC 《Molecular ecology》2006,15(4):1067-1081
The contemporary pattern of intraspecific genetic variation can indicate the relative role of gene flow and local differentiation in shaping the evolutionary history and future trajectory of a species. To assess the recent influence of contrasting life history and demographic characteristics on genetic structure within a group of closely related species, patterns of genetic differentiation (F(ST) and related statistics) and isolation by distance (IBD) were compared among 17 congeneric herbaceous plant species. Data came from 35 published studies of 16 species, and a previously unpublished analysis of chloroplast genetic variation in the rare endemic Silene rotundifolia. Among-population genetic variance was most strongly influenced by the type of genetic marker used; cytoplasmic markers showed larger values than allozyme and anonymous nuclear markers. Other independently significant factors were geographical range size and, for allozyme studies, reproductive system; in particular, endemism and hermaphroditism were associated with higher among-population genetic variance, whereas large native geographical range and dioecy were associated with lower among-population variance. Over equivalent spatial scales, dioecious populations also showed weaker IBD than hermaphrodites, perhaps because increased population transience and/or variance in the spatial pattern of gene flow are more closely associated with dioecy in this genus. Invasive populations had both highly variable among-population genetic variance, and no evidence for IBD, consistent with nonequilibrium conditions. Other analysed factors including predominant pollinator had no discernable influence on genetic structure or patterns of IBD. In general, this comparative approach appears to be valuable for synthesizing the complementary information provided by F-statistics and IBD, and for indicating the relative importance of particular biological factors in shaping genetic variation within different species of a closely related plant group.  相似文献   

17.
Worldwide, age-related macular degeneration (AMD) is a serious threat to vision loss in individuals over 50 years of age with a pooled prevalence of approximately 9%. For 2020, the number of people afflicted with this condition is estimated to reach 200 million. While AMD lesions presenting as geographic atrophy (GA) show high inter-individual variability, only little is known about prognostic factors. Here, we aimed to elucidate the contribution of clinical, demographic and genetic factors on GA progression. Analyzing the currently largest dataset on GA lesion growth (N = 388), our findings suggest a significant and independent contribution of three factors on GA lesion growth including at least two genetic factors (ARMS2_rs10490924 [P < 0.00088] and C3_rs2230199 [P < 0.00015]) as well as one clinical component (presence of GA in the fellow eye [P < 0.00023]). These correlations jointly explain up to 7.2% of the observed inter-individual variance in GA lesion progression and should be considered in strategy planning of interventional clinical trials aimed at evaluating novel treatment options in advanced GA due to AMD.  相似文献   

18.
Rates of inbreeding (ΔF) in selected populations were predicted using the framework of long-term genetic contributions and validated against stochastic simulations. Deterministic predictions decomposed ΔF into four components due to: finite population size, directional selection, covariance of genetic contribution of mates, and deviation of variance of family size from that expected from a Poisson distribution. Factorial (FM) and hierarchical (HM) mating systems were compared under mass and sib-index selection. Prediction errors were in most cases for ΔF less than 10% and for rate of gain less than 5%. ΔF was higher with index than mass selection. ΔF was lower with FM than HM in all cases except random selection. FM reduced the variance of the average breeding value of the mates of an individual. This reduced the impact of the covariance of contributions of mates on ΔF. Thus, contributions of mates were less correlated with FM than HM, causing smaller deviations of converged contributions from the optimum contributions. With index selection, FM also caused a smaller variance of number of offspring selected from each parent. This reduced variance of family size reduced ΔF further. FM increases the flexibility in breeding schemes for achieving the optimum genetic contributions.  相似文献   

19.
Genomic evaluation models can fit additive and dominant SNP effects. Under quantitative genetics theory, additive or “breeding” values of individuals are generated by substitution effects, which involve both “biological” additive and dominant effects of the markers. Dominance deviations include only a portion of the biological dominant effects of the markers. Additive variance includes variation due to the additive and dominant effects of the markers. We describe a matrix of dominant genomic relationships across individuals, D, which is similar to the G matrix used in genomic best linear unbiased prediction. This matrix can be used in a mixed-model context for genomic evaluations or to estimate dominant and additive variances in the population. From the “genotypic” value of individuals, an alternative parameterization defines additive and dominance as the parts attributable to the additive and dominant effect of the markers. This approach underestimates the additive genetic variance and overestimates the dominance variance. Transforming the variances from one model into the other is trivial if the distribution of allelic frequencies is known. We illustrate these results with mouse data (four traits, 1884 mice, and 10,946 markers) and simulated data (2100 individuals and 10,000 markers). Variance components were estimated correctly in the model, considering breeding values and dominance deviations. For the model considering genotypic values, the inclusion of dominant effects biased the estimate of additive variance. Genomic models were more accurate for the estimation of variance components than their pedigree-based counterparts.  相似文献   

20.
DNA markers are commonly used for large-scale evaluation of genetic diversity in farm animals, as a component of the management of animal genetic resources. AFLP markers are useful for such studies as they can be generated relatively simply; however, challenges in analysis arise from their dominant scoring and the low level of polymorphism of some markers. This paper describes the results obtained with a set of AFLP markers in a study of 59 pig breeds. AFLP fingerprints were generated using four primer combinations (PC), yielding a total of 148 marker loci, and average harmonic mean of breed sample size was 37.3. The average proportion of monomorphic populations was 63% (range across loci: 3%-98%). The moment-based method of Hill and Weir (2004, Mol Ecol 13:895-908) was applied to estimate gene frequencies, gene diversity (F(ST)), and Reynolds genetic distances. A highly significant average F(ST) of 0.11 was estimated, together with highly significant PC effects on gene diversity. The variance of F(ST) across loci also significantly exceeded the variance expected under the hypothesis of AFLP neutrality, strongly suggesting the sensitivity of AFLP to selection or other forces. Moment estimates were compared to estimates derived from the square root estimation of gene frequency, as currently applied for dominant markers, and the biases incurred in the latter method were evaluated. The paper discusses the hypotheses underlying the moment estimations and various issues relating to the biallelic, dominant, and lowly polymorphic nature of this set of AFLP markers and to their use as compared to microsatellites for measuring genetic diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号