共查询到20条相似文献,搜索用时 15 毫秒
1.
模拟失重大鼠肠系膜小动脉平滑肌细胞电压依赖性钙离子通道电流的改变 总被引:1,自引:0,他引:1
本工作旨在探讨短、中期模拟失重下人鼠肠系膜小动脉血管平滑肌细胞(vascular smooth muscle cells,VSMCs)电压依赖性钙离子通道(voltage-dependent calcium channels,VDC)功能的改变。以尾部悬吊大鼠模型模拟失重对不同部位血管的影响。采用全细胞膜片钳实验技术,以Ba^2 作为载流子,测定1周及4周模拟失重人鼠肠系膜小动脉VSMCs的VDC电流密度、稳态激活与失活曲线及有关参数,并与对照组结果进行比较。研究表明,本实验所记录到的内向电流主要为钡离子通过长时程VDC(L-VDC)所形成的电流。与对照组相比,1周模拟失重大鼠肠系膜小动脉VSMCs的L-VDc电流密度仪呈降低趋势;但4周模拟失重人鼠肠系膜小动脉VSMCs的L-VDC电流密度则已显著降低。此外,与对照组相比,1、4周模拟失重大鼠肠系膜小动脉VSMCs的膜电容、翻转电位与L-VDC的一些动力学特征值,如通道的开放与关闭速率,通道电流稳态激活与火活曲线及其特征拟合参数V0.5与K的值,均末见有显著改变。结果提示:模拟失重下后身小动脉VSMCs的VDC功能降低可能是模拟失重引起人鼠后身动脉收缩反应性降低及适应性萎缩变化的电生理机制之一。 相似文献
2.
Y. Péréon J. P. Louboutin J. Noireaud 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1993,163(3):203-211
Some contractile properties of small bundles (100–200 m diameter) of muscle fibres isolated from the extensor digitorum longus muscle of rats at different times of development were compared. An increase of resting potential was observed in these muscles from-26.9 mV at 1 day of age to-72.6 mV at 3 months. Twitch tension and duration of postnatal muscles 1–7 days were diminished by reducing [Ca]o (substituted by Mg2+) or adding inorganic cations (Ni2+, Cd2+, La3+), unlike in the oldest animals (14 days–3 months postnatal) where twitch responses were unaffected. In the latter, potentiation of the twitch tension was even recorded in the presence of Ni2+ (0.5–1 mmol·l-1) and Cd2+ (0.5–2 mmol·l-1). Properties of activation and inactivation of the developed tension following elevation of [K]o to 15–200 mmol·l-1 were analysed at the same stages of postnatal development. In contrast to the tension-membrane potential curves for activation, which presented an average negative shift of-17.6 mV between 1 day postnatal and 3 months of age, a voltage dependence of inactivation similar to that encountered in adult extensor digitorum longus muscles, was already reached at 7 days of age. These results suggest an asynchronism in the maturation of the potential-dependent characteristics of the depolarization-contraction coupling mechanism. Furthermore, during the first week postnatal, in relation with poorly developed membrane systems and low [Ca]i-recycling capability, [Ca]o plays a fundamental role in maintaining contraction by replenishing the intracellular calcium pool.Abbreviations ATPase
adenosine triphosphatase
- [Ca]o ([K]o)
extracellular calcium (potassium) concentration
- DC
depolarization-contraction
- EC
excitation-contraction
- e.d.l. muscle
extensor digitorum longus muscle
-
E
m
membrane potential
-
E
r
resting potential
- HEPES
N-2 hydroxyethylpiperazine-N-2 ethanesulphonic acid
-
I
fast
fast calcium current
- sr
sarcoplasmic reticulum
- T-tubules
transverse tubules 相似文献
3.
J. P. Leader J. J. Bray A. D. C. Macknight D. R. Mason D. McCaig R. G. Mills 《The Journal of membrane biology》1984,81(1):19-27
Summary Tissue composition, membrane potentials and cellular activity of potassium, sodium and chloride have been measured in innervated and denervated rat skeletal muscles incubatedin vitro. After denervation for 3 days, tissue water, sodium and chloride were increased but cellular potassium content and measured activity were little affected, despite a decrease of 16 mV in resting membrane potential which would have necessitated a decrease in cellular potassium activity of almost 50% were potassium distributed at electrochemical equilibrium. These findings, therefore, preclude a decreased electrochemical potential gradient for potassium as the cause of the membrane depolarization characteristic of denervated muscle fibers. Analysis of the data excludes an important contribution of rheogenic sodium transport to the resting potential of innervated muscles. These results strongly support the hypothesis that the decreased membrane potential in denervated fibers reflects a relative increase in the membrane permeability to sodium. 相似文献
4.
A comparative analysis of the contractile responses induced by acetylcholine and replacement of the external Na+ ions with choline ions in the isolated twitch and tonic fibers of frog skeletal muscles was performed. The effects of extracellular Ca2+ concentration and several pharmacological agents modulating the activity of various systems maintaining Ca2+ level in the myoplasm (dantrolene, cresol, d-tubocurarine, and tetrodotoxin) were studied. It has been found that a voltage-dependent Ca2+ release from the sarcoplasmic reticulum depot is the main mechanism inducing the acetylcholine contracture in the fibers of both types. However, the twitch and tonic fibers differ in the properties of the α-isoform and(or) the ratio of α- to β-isoforms of ryanodine-sensitive channels. In the fibers of both types, the replacement of over 25% of Na+ ions with choline induces long-term contracture responses, which are also mediated by activation of acetylcholine receptors. It is assumed that an additional mechanism—accumulation of choline ions in the myoplasm and their direct action on the ryanodine-sensitive channels—is involved in the development of such contractile responses. 相似文献
5.
Malwina Taborowska Dorota Bukowska Hanna Drzymała-Celichowska Barbara Mierzejewska-Krzyżowska 《Somatosensory & motor research》2016,33(3-4):200-208
The rat medial gastrocnemius (MG) muscle is composed of the proximal and distal compartments. In this study, morphometric properties of the compartments and their muscle fibres at five levels of the muscle length and the innervation pattern of these compartments from lumbar segments were investigated. The size and number of muscle fibres in the compartments were different. The proximal compartment at the largest cross section (25% of the muscle length) had 34% smaller cross-sectional area but contained a slightly higher number of muscle fibres (max. 5521 vs. 5360) in comparison to data for the distal compartment which had the largest cross-sectional area at 40% of the muscle length. The muscle fibre diameters revealed a clear tendency within both compartments to increase along the muscle (from the knee to the Achilles tendon) up to 46.9?μm in the proximal compartment and 58.4?μm in the distal one. The maximal tetanic and single twitch force evoked by stimulation of L4, L5, and L6 ventral roots in whole muscle and compartments were measured. The MG was innervated from L4 and L5, only L5, or L5 and L6 segments. The proximal compartment was innervated by axons from L5 or L5 and L4, and the distal one from L5, L5 and L6, or L5 and L4 segments. The forces produced by the compartments summed non-linearly. The tetanic forces of the proximal and distal compartments amounted to 2.24 and 4.86?N, respectively, and their algebraic sums were 11% higher than the whole muscle force (6.37?N). 相似文献
6.
The aim of the present study was to compare in man the innervation pattern and the functional responses to neuronal messengers in medium sized lenticulostriate and branches of the posterior cerebral arteries (PCA). The majority of the nerve fibers found were sympathetic and displayed specific immunoreactivity for tyrosine hydroxylase (TH) and neuropeptide Y (NPY). Only few nerve fibers displayed vasoactive intestinal polypeptide (VIP), calcitonin gene-related peptide (CGRP) and substance P (SP) immunoreactivity. In both arteries, the contractions induced by noradrenaline (NA), NPY and 5-hydroxytryptamine (5-HT) and the relaxant responses induced by acetylcholine (ACh), VIP and pituitary adenylate cyclase activating peptide-27 (PACAP) as well as CGRP and SP were compared in vitro. In conclusion, there was no major difference in innervation pattern or vasomotor sensitivity (pEC50 and pIC50 values) between the two vessels. However, the general pattern indicates stronger vasomotor responses (Emax and Imax) in the PCA branches as compared to the lenticulostriate arteries which may lend support for the clinical observation of a difference in stroke expression between the two vascular areas. 相似文献
7.
Jarosaw Ruczyski Zdzisaw Konstaski Roman Korolkiewicz Jacek Petrusewicz Piotr Rekowski 《Letters in Peptide Science》2002,9(2-3):91-99
Galanin (GAL), a 29-amino-acid-residue neuropeptide, modulatesgastric smooth muscles activity by interacting with specific receptors. However due to the lack of specific antagonists in thegastrointestinal (GI) tract the actual level of GAL involvement in GI motility remains largely unknown. In our studies we have performed structure-activity relationship studies of two porcinegalanin fragments, two chimeric galanin analogues and several 15-amino-acid-residue galanin analogues modified in positions 2, 3, 4, 6, 8 or 14, investigating their contractile action on rat isolated gastric fundus strips, employed as in vitro assay of peptides activity. Thus we intended to characterize the moleculardomains of GAL responsible for binding and activation of GAL receptors in rat gastric smooth muscle cells. The data acquired in the course of our structure-activity relationship studies suggest that both N- and C-terminal fragment of GAL molecule contribute towards the affinity and activity of GAL gastric smooth muscle cell receptors. Moreover, we concluded that positions 2, 3, 4, 6, 8 and 14 in the amino acid sequence of GAL may play important roles in binding and activation of GAL receptors in rat gastric smooth muscle cells. 相似文献
8.
Ruczyński Jarosław Konstański Zdzisław Korolkiewicz Roman Petrusewicz Jacek Rekowski Piotr 《International journal of peptide research and therapeutics》2002,9(2-3):91-99
Summary Galanin (GAL), a 29-amino-acid-residue neuropeptide, modulates gastric smooth muscles activity by interacting with specific
receptors. However due to the lack of specific antagonists in the gastrointestinal (GI) tract the actual level of GAL involvement
in GI motility remains largely unknown. In our studies we have performed structure-activity relationship studies of two porcine
galanin fragments, two chimeric galanin analogues and several 15-amino-acid-residue galanin analogues modified in positions
2, 3, 4, 6, 8 or 14, investigating their contractile action on rat isolated gastric fundus strips, employed as in vitro assay
of peptides activity. Thus we intended to characterize the molecular domains of GAL responsible for binding and activation
of GAL receptors in rat gastric smooth muscle cells. The data acquired in the course of our structure-activity relationship
studies suggest that both N-and C-terminal fragment of GAL molecule contribute towards the affinity and activity of GAL gastric
smooth muscle cell receptors. Moreover, we concluded that positions 2, 3, 4, 6, 8 and 14 in the amino acid sequence of GAL
may play important roles in binding and activation of GAL receptors in rat gastric smooth muscle cells.
Abbreviations: The symbols of the amino acids, peptides and their derivatives are in accordance with the 1983 Recommendations of the IUPAC-IUB
Joint Commission on Biochemical Nomenclature (Eur. J. Biochem.
138, 9 (1984)). Other symbols 相似文献
9.
Possible role for the c-ski gene in the proliferation of myogenic cells in regenerating skeletal muscles of rats 总被引:1,自引:0,他引:1
Soeta C Suzuki M Suzuki S Naito K Tachi C Tojo H 《Development, growth & differentiation》2001,43(2):155-164
Skeletal muscle regeneration after injury involves various processes, such as infiltration by inflammatory cells, the proliferation of satellite cells and fusion to myotubes. The c-ski nuclear protein has been implicated in the control of cell proliferation and/or terminal differentiation in the growth of skeletal muscle. However, there have been no reports concerning the involution of c-ski in the regeneration of injured skeletal muscle in mammals. A possible role for c-ski in the proliferation of myogenic cells in rat skeletal muscle during regeneration has been investigated with the assistance of in vitro experiments with L6 skeletal muscle cells. The expression levels of c-ski mRNA in regenerating tissues increased to approximately threefold that of intact tissues at 2 days after injury and decreased to normal levels at 2 weeks after injury. Many mononuclear cells among the Ski-positive cells expressed desmin and proliferating cell nuclear antigen, indicating that Ski-producing cells include the proliferating myogenic cells. The proliferation of L6 cells was significantly retarded by expression of the antisense ski gene. The results of the present study reveal that the c-ski gene plays an important role in the proliferation of myogenic cells in the regeneration of injured skeletal muscle. 相似文献
10.
Vascular endothelial function deteriorates with age and disease, and the production of vasodilator factors like nitric oxide (NO) decreases. The free amino acid l-citrulline increases vasodilation and blood flow through increased NO production. We examined the effects of oral l-citrulline administration on vascular delivery of substances to skeletal muscles. In Experiment 1, following oral l-citrulline administration and subsequent intravenous Evans blue dye (EBD) administration to rats, EBD levels delivered to skeletal muscles were measured after 60 min. In Experiment 2, plasma concentrations of amino acids and NOx, an indicator of vasodilation, were measured over time after oral l-citrulline administration. In Experiment 3, we measured EBD levels in skeletal muscles of streptozotocin-induced type 1 diabetic rats following l-citrulline administration. In these experiments, EBD levels in the soleus muscle were higher in the l-citrulline group than in the control group (19.9 ± 0.7 vs. 22.5 ± 1.9 μg/g tissue, p < 0.05). Plasma l-arginine, l-citrulline, and NOx levels were increased within 30 min after l-citrulline administration. EBD levels in the soleus and gastrocnemius muscles were higher in diabetic rats with l-citrulline administration (18.7 ± 2.2 vs. 25.0 ± 4.3 μg/g tissue, p < 0.05 and 8.0 ± 0.5 vs. 9.2 ± 0.8 μg/g tissue, p = 0.05, respectively). These data suggest that oral l-citrulline administration may increase the level of substances delivered to skeletal muscles by increasing the NO production in both normal and vascular endothelial dysfunction models. 相似文献
11.
Alexander O. Shpakov Ludmila A. Kuznetsova Svetlana A. Plesneva Alexander P. Kolychev Vera M. Bondareva Oksana V. Chistyakova Marianna M. Pertseva 《Central European Journal of Biology》2006,1(4):530-544
Functional disturbance in the novel adenylyl cyclase signaling mechanism (ACSM) of insulin and relaxin action in rat streptozotocin
(STZ) type I diabetes was studied on the basis of the authors’ conception of molecular defects in hormonal signaling systems
as the main causes of endocrine diseases. Studying the functional state of molecular components of the ACSM and the mechanism
as a whole, the following changes were found in the skeletal muscles of diabetic rats compared with control animals: 1) increase
of insulin receptor binding due to an increase in the number of insulin binding sites with high and low affinity; 2) increase
of the basal adenylyl cyclase (AC) activity and the reduction of AC-activating effect of non-hormonal agents (guanine nucleotides,
sodium fluoride, forskolin); 3) reduction of ACSM response to stimulatory action of insulin and relaxin; 4) decrease of the
insulin-activating effect on the key enzymes of carbohydrate metabolism, glycogen synthase and glucose-6-phosphate dehydrogenase.
Hence, the functional activity of GTP-binding protein of stimulatory type, AC and their functional coupling are decreased
during experimental type 1 diabetes that leads to the impairment of the transduction of insulin and relaxin signals via ACSM. 相似文献
12.
Joumaa WH Léoty C 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2002,172(4):329-338
The effects of 5 weeks treadmill-exercise training on isometric tension and contractile proteins were studied in intact and skinned isolated small bundles of rat skeletal soleus and extensor digitorum longus (edl) fibers. In soleus and edl muscles, 5 weeks exercise training: (i) increased twitch amplitude by 25% and 8%, respectively, without modification in the time-to-peak tension and the time constant of relaxation, (ii) increased the amplitude of K(+) contracture by 93% and 88%, respectively, and accelerated its relaxation by 17% and 43%, respectively, and (iii) increased the amplitude of caffeine contractures (soleus: 0.5 mM: 86%, 10 mM: 77%; edl: 0.5 mM: 89%, 10 mM: 87%). In conclusion, changes in contractile responses were associated with shifts in the steady state inactivation curves and in the voltage-dependent activation curve to a more negative potential, with increases in soleus and edl caffeine sensitivity, without changes in the Ca(2+) sensitivity of contractile proteins and myosin heavy chain isoforms. 相似文献
13.
Acetylcholinesterase-associated collagen Q is expressed also outside of neuromuscular junctions in the slow soleus muscle, but not in fast muscles. We examined the nerve dependence of muscle collagen Q expression and mechanisms responsible for these differences. Denervation decreased extrajunctional collagen Q mRNA levels in the soleus muscles and junctional levels in fast sternomastoid muscles to about one third. Cross-innervation of denervated soleus muscles by a fast muscle nerve, or electrical stimulation by 'fast' impulse pattern, reduced their extrajunctional collagen Q mRNA levels by 70–80%. In contrast, stimulation of fast muscles by 'slow' impulse pattern had no effect on collagen Q expression. Calcineurin inhibitors tacrolimus and cyclosporin A decreased collagen Q mRNA levels in the soleus muscles to about 35%, but did not affect collagen Q expression in denervated soleus muscles or the junctional expression in fast muscles. Therefore, high extrajunctional expression of collagen Q in the soleus muscle is maintained by its tonic nerve-induced activation pattern via the activated Ca2+ -calcineurin signaling pathway. The extrajunctional collagen Q expression in fast muscles is independent of muscle activation pattern and seems irreversibly suppressed. The junctional expression of collagen Q in fast muscles is partly nerve-dependent, but does not encompass the Ca2+ -calcineurin signaling pathway. 相似文献
14.
Galanin potentiates electrical stimulation and exogenous norepinephrine-induced contractions in the rat vas deferens 总被引:2,自引:0,他引:2
In order to evaluate the mode of action of galanin (GAL) on the neuroeffector mechanism of peripheral sympathetic nerve fibers, the effects of this peptide were tested on the electrical stimulated and the unstimulated preparations of the isolated rat vas deferens in the presence of 10(-7) M atropine. The contractile responses, which were mediated predominantly by activation of postganglionic noradrenergic nerve fibers were dose-dependently potentiated by GAL in concentrations ranging from 1 to 50 nM. The facilitatory action induced by GAL in high concentrations (greater than 10 nM) usually returned to the control level at 2-3 min and were tachyphylactic. The potentiating action of GAL was not modified by pretreatment with 10(-7) M propranolol. Contractions produced by exogenous norepinephrine (NE) in the unstimulated preparations were not affected by pretreatment with low concentrations (less than 5 nM) of GAL. On the other hand, the contractions were dose-dependently potentiated 1 min after pretreatment with higher concentrations (greater than 10 nM) of GAL, which recovered 15 min after constant flow washout. Contractions developed by exogenous 5-hydroxytryptamine were not affected, or slightly inhibited, by GAL (1-50 nM). In some preparations without electrical stimulation, high concentrations of GAL caused a slight contraction, which was not blocked by pretreatment with 10(-6) M phentolamine and 10(-6) M tetrodotoxin. These results suggest that GAL receptors exist presynaptically in the rat vas deferens and that stimulation of the receptors by GAL potentiates the release of NE from the nerve terminals during postganglionic sympathetic nerve stimulation. Other mechanisms for GAL action, such as influence on neuronal uptake and catecholamine metabolism, cannot be ruled out. 相似文献
15.
Jean M. Krebs Richard M. Denney 《In vitro cellular & developmental biology. Animal》1997,33(3):187-194
Summary The skeletal rat myoblast omega (RMo) cell line forms myotubes that exhibit spontaneous contractions under appropriate conditions in culture. We examined if the RMo cells would provide a model for studying atrophy and muscle contraction. To better understand how to obtain contractile cultures, we examined levels of contraction under different growing conditions. The proliferation medium and density of plating affected the subsequent proportion of spontaneously contracting myotubes. Using a ribonuclease protection assay, we found that exponentially growing RMo myoblasts contained no detectable myogenin or herculin mRNA, while differentiating myoblasts contained high levels of myogenin mRNA but no herculin mRNA. There was no increase in myogenin mRNA concentration in either primary chick or RMo myotubes whose contractions were inhibited by depolarizing concentrations of potassium (K+). Thus, altered myogenin mRNA concentrations are not involved in atrophy of chick myotubes. Depolarizing concentrations of potassium inhibited spontaneous contractions in both RMo cultures and primary chick myotube cultures. However, we found that the myosin concentration of 6-d-old contracting RMo cells fed medium plus AraC was 11 ± 3 μg myosin/μg DNA, not significantly different from 12 ± 4 μg myosin/μg DNA (n=3), the myosin concentration of noncontracting RMo cells (treated with 12 mM K+ for 6 d). Resolving how RMo cells maintained their myosin content when contraction is inhibited may be impotrant for understanding atrophy. 相似文献
16.
Inflammatory responses to ischemia,and reperfusion in skeletal muscle 总被引:16,自引:0,他引:16
Gute Dean C Ishida Tetsuya Yarimizu Koji Korthius Ronald J. 《Molecular and cellular biochemistry》1998,179(1-2):169-187
Skeletal muscle ischemia and reperfusion is now recognized as one form of acute inflammation in which activated leukocytes play a key role. Although restoration of flow is essential in alleviating ischemic injury, reperfusion initiates a complex series of reactions which lead to neutrophil accumulation, microvascular barrier disruption, and edema formation. A large body of evidence exists which suggests that leukocyte adhesion to and emigration across postcapillary venules plays a crucial role in the genesis of reperfusion injury in skeletal muscle. Reactive oxygen species generated by xanthine oxidase and other enzymes promote the formation of proinflammatory stimuli, modify the expression of adhesion molecules on the surface of leukocytes and endothelial cells, and reduce the bioavailability of the potent antiadhesive agent nitric oxide. As a consequence of these events, leukocytes begin to form loose adhesive interactions with postcapillary venular endothelium (leukocyte rolling). If the proinflammatory stimulus is sufficient, leukocytes may become firmly adherent (stationary adhesion) to the venular endothelium. Those leukocytes which become firmly adherent may then diapedese into the perivascular space. The emigrated leukocytes induce parenchymal cell injury via a directed release of oxidants and hydrolytic enzymes. In addition, the emigrating leukocytes also exacerbate ischemic injury by disrupting the microvascular barrier during their egress across the vasculature. As a consequence of this increase in microvascular permeability, transcapillary fluid filtration is enhanced and edema results. The resultant increase in interstitial tissue pressure physically compresses the capillaries, thereby preventing microvascular perfusion and thus promoting the development of the no-reflow phenomenon. The purpose of this review is to summarize the available information regarding these mechanisms of skeletal muscle ischemia/reperfusion injury. 相似文献
17.
The involvement of cyclooxygenase-2 (COX-2)-derived products and superoxide anion in the effect of lipopolysaccharide in noradrenaline (NA)-induced contraction was investigated in small mesenteric arteries (SMA) from normotensive, Wistar Kyoto (WKY), and spontaneously hypertensive (SHR) rats. In WKY, lipopolysaccharide (10 microg/ml, 1 and 5 h) only inhibited the NA response (0.1-30 microM) in the presence of dexamethasone (1 microM), indomethacin (10 microM), the selective COX-2 inhibitor, NS 398 (10 microM), and the TXA(2)/PGH(2) receptor antagonist, SQ 29,548 (10 microM) but not of superoxide dismutase (SOD, 100 U/ml). In SHR, lipopolysaccharide inhibited the NA response by itself; this inhibition was potentiated by dexamethasone, indomethacin, NS 398, SQ 29,548 and SOD. The effect of lipopolysaccharide plus indomethacin, NS 398 or SQ 29,548 was higher in SMA from WKY than SHR only after 1 h lipopolysaccharide incubation. N(G)-nitro-L-arginine methyl ester (100 microM) and endothelium removal abolished the indomethacin-induced potentiatory effect of lipopolysaccharide in both strains. Endothelium removal also abolished the SOD potentiatory effect in SMA from SHR. Lipopolysaccharide increases COX-2 expression to a similar level in both strains and iNOS expression in a greater extent in SHR; these increases were reduced by dexamethasone. These results indicate: 1) lipopolysaccharide induces the endothelial production of contractile prostanoids from COX-2 in SMA, probably to compensate the increase in NO from iNOS; 2) the production of prostanoids in the presence of lipopolysaccharide seems to be greater in normotensive than hypertensive rats only after lipopolysaccharide short incubation times; 3) endothelial production of O(2)(.-) contributes to counteract depression of NA contraction caused by lipopolysaccharide only in SHR. 相似文献
18.
Summary The alary muscles of Locusta migratoria adults make up the major tissue of the dorsal diaphragm which separates pericardial and perivisceral sinuses in the abdomen. The alary muscles are striated with a sarcomere at rest measuring about 9 m. The Z-line has a staggered-beaded arrangement with A-bands and I-bands readily discernable. Thick myofilaments are surrounded by 10 or more thin filaments. The sarcoplasm has few mitochondria near the area of the Z-line, dyads are present and sarcoplasmic reticulum is poorly developed. Axons which innervate the alary muscle are either contained within invaginated folds of the sarcolemma of the muscle cells or the muscle cells send finger-like projections to envelop the axons. The synaptic terminals contain synaptic vesicles between 40 and 45 nm in diameter and a few electron-dense granules near or less than 170 nm in diameter. Away from synaptic terminals the axon profiles show few or no granules. The axons are accompanied everywhere by well-developed glial cells. This then is not typical neurosecretomotor innervation, however, the presence of electron-dense granules suggests the possibility of peptidergic neurotransmission. 相似文献
19.
Sergio Villaschi Roberto F. Nicosia Marion R. Smith 《In vitro cellular & developmental biology. Animal》1994,30(9):589-595
Summary Recent studies indicate that the neointima of injured rat arteries is composed of a subpopulation of smooth muscle cells (SMCs) distinct from medial smooth muscle cells. However, SMC diversity in normal adult aorta has remained elusive. This study characterizes two morphologically and functionally distinct SMC types isolated from different anatomic regions of the normal rat aorta. Rat aortic medial smooth muscle cells (MSMCs) were isolated from the media after removal of the intimal and adventitial cells. Rat aortic intimal smooth muscle cells (ISMCs) were isolated from the intimal aspect of everted rat aortas. The two cell types were characterized morphologically and immunohistochemically and were compared for their capacity to contract collagen gels in response to endothelin-1. MSMCs were spindle-shaped and grew in hills and valleys showing features previously described for vascular SMCs. Conversely, ISMCs displayed a polygonal and epithelioid shape, grew mainly as a monolayer, and had a higher proliferative rate. Both cell types expressed alpha-smooth muscle actin and were negative for Factor VIII-RAg. ISMCs produced large amounts of a laminin and type IV collagen-rich extracellular matrix which had a characteristic pericellular distribution. ISMCs, but not MSMCs, rapidly contracted collagen gels in response to endothelin-1. This study indicates that the normal rat aorta contains two types of SMCs located in anatomically distinct regions of the vessel wall. Because of their functional characteristics, the SMCs isolated from the intimal aspect of the aorta may play an important role in physiologic as well as pathologic conditions. 相似文献
20.
To evaluate the rate at which the four main aflatoxins (aflatoxins B1, B2, G1 and G2) are able to cross the luminal membrane of the rat small intestine, a study about intestinal absorption kinetics of these mycotoxins has been made. In situ results obtained showed that the absorption of aflatoxins in rat small intestine is a very fast process that follows first-order kinetics, with an absorption rate constant (k
a
) of 5.84±0.05 (aflatoxin B1), 4.06±0.09 (aflatoxin B2), 2.09±0.03 (aflatoxin G1) and 1.58±0.04 (aflatoxin G2) h–1, respectively. 相似文献