首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Cobalt-(cysteinyl)4 tetrahedra in yeast cobalt(II)-thionein   总被引:3,自引:0,他引:3  
The conversion of yeast Cu(I)-thionein into the Co(II) derivative was successful. 2.6 Co atoms were incorporated per mole of protein yielding a Co : S ratio of 1 : 3. The electronic absorption of this highly air sensitive Co(II)-thionein is virtually identical to those of the Co(II) derivatives of other metallothioneins originating from vertebrates and N. crassa. Weaker Cotton extrema are noticed and the two doublet splittings of Cu-thionein disappeared. Throughout the molar ellipticities of the cobalt protein were markedly lower compared to those of the Cu-thionein. Owing to the characteristic charge transfer bands and d-d transitions a tetrahedral Co-thiolate coordination was deduced. The best fit proposal maintaining the above Co : S ratio of 1 : 3 was a six-membered ring with three bridging cysteine sulphurs.  相似文献   

4.
5.
Several independent criteria indicate 2 mol of terbium(III) bind to yeast enolase in the absence of substrate-fluorescence titrations of enzyme and metal, effects on thermal stability and published ultrafiltration and inhibition experiments. These measurements also suggest the terbium binding sites are the same as those normally occupied by “conformational” magnesium. Terbium binds much more strongly than magnesium, however, and measurements of the kinetics of the absorbance change in the terbium-enzyme on adding excess EDTA suggest the terbium-enzyme dissociation constant is about 1500 that of the magnesium-enzyme. Measurements of enzyme activity as a function of substrate concentration show that terbium permits no enzymatic activity. However, magnesium competes more effectively with the lanthanide if the substrate analogue 3-aminoenolpyruvate 2-phosphate (AEP) is present.The fluorescence of the lanthanide is not readily observed on exciting the terbium-enzyme at 280 nm, indicating the absence of tyrosines or tryptophans in the coordination sphere of the metal. Excitation of terbium using 488 nm radiation from an argon ion laser shows the fluorescence of the metal is enhanced by binding to the enzyme. EDTA and carbonate have similar effects. This suggests carboxyl groups are involved in binding metal at the conformational sites of yeast enolase. Measurements of lifetimes of enzyme-bound terbium in the presence and absence of D2O indicated three moles of water remained on each of the bound metals, independently of the buffer used. If enzyme-bound terbium is assumed to be nine-coordinate, the metal must bind to six groups from the enzyme. The presence of substrate does not markedly affect the emission spectrum of the bound terbium or the number of water molecules remaining on the metal, but calorimetric measurements show that substrate binds to the terbium enzyme.  相似文献   

6.

Background  

A valuable weapon in the arsenal available to yeast geneticists is the ability to introduce specific mutations into yeast genome. In particular, methods have been developed to introduce deletions into the yeast genome using PCR fragments. These methods are highly efficient because they do not require cloning in plasmids.  相似文献   

7.
8.
The reaction of yeast Cu-MT with nitric oxide (NO) was examined. A release of copper from the Cu(I)-thiolate clusters of the protein by this remarkably important reagent was observed in vitro. The characteristic spectroscopic signals of the Cu(I)-thiolate chromophores levelled off in the presence of a two-fold molar excess of NO expressed per equivalent of thionein-copper as monitored by UV-electronic absorption, circular dichroism and luminescence emission. At the same time all of the copper became EPR detectable. The oxidized metal ions could easily be removed from the protein moiety by gelfiltration. The reversibility of the copper releasing process is of special interest. The specific fluorescence and dichroic properties of the previously demetallized protein could be recovered up to 85% under reductive conditions. Moreover, no difference in the electrophoretic behaviour was seen compared to the untreated Cu-MT. Thus, NO may act as a potent metabolic source for the transient copper release from Cu-MT. In the course of an oxidative burst this highly Fenton active copper is able to improve the efficacy of biological defence mechanisms.  相似文献   

9.
10.
Isolation of glucosylceramides from yeast (Hansenula ciferri)   总被引:1,自引:0,他引:1  
  相似文献   

11.
Activation of yeast enolase by Cd2+ exhibits properties similar to activation by the physiological cofactor Mg2+. The activity is weakly stimulated, then inhibited by increasing ionic strength. The activity increases, then falls with increasing Cd2+ concentration. The effect of pH on activity produced by Cd2+ is very similar to that produced by Mg2+, except that the Cd2+ profile is shifted one pH unit to more alkaline values, and the maximum activity of the Cd2+-enzyme is about 10% of that of the Mg2+-enzyme. The apparent kinetic parameters of Cd2+ activation show little effect of pH except for inhibition by high concentrations of Cd2+: the apparent Ki increases sharply with pH. This is interpreted as the result of Cd2+ being a less effective "catalytic" metal ion, and Cd2+ being more effective in stabilizing the enzyme at alkaline pH's. The similarity of effects of ionic strength, divalent cation, and pH may be due to interaction with the same six sites per mole of enzyme. We also characterized the dependence of what is believed to be the enzyme-catalyzed enolization of a substrate analog, D-tartronate semialdehyde-2-phosphate (TSP) on similar parameters of pH, ionic strength, etc. The putative enolization is dependent on catalytic metal ion, although the TSP binds to the conformational Cd2+-enzyme complex. The reaction is very slow and very pH dependent, increasing with pH with a midpoint of reaction velocity at pH 8.7. There is a strong qualitative correlation between pH dependencies of reaction velocity of substrate conversion and TSP enolization and absorbance of the enzyme-bound TSP enolate, whether with Mg2+ or Cd2+ as cofactor. The slowness of the Cd2+-TSP reaction is not limited by proton release or any reaction involving covalent bonds to hydrogen. The apparent reaction rate constant increases linearly with Cd2+ concentration. Addition of excess ethylenediaminetetraacetic acid reverses the TSP reaction, but again very slowly. The binding of Cd2+ to the catalytic sites is characterized by low association and dissociation rate constants.  相似文献   

12.
13.
A Haas  W Wickner 《The EMBO journal》1996,15(13):3296-3305
In Saccharomyces cerevisiae, vacuoles are inherited by the formation of tubular and vesicular structures from the mother vacuole, the directed projection of these structures into the bud and the homotypic fusion of these vesicles. We have previously exploited a cell-free inheritance assay to show that the fusion step of vacuole inheritance requires cytosol, ATP and the GTPase Ypt7p. Here we demonstrate, using affinity-purified antibodies and purified recombinant proteins, a requirement for Sec17p (yeast alpha-SNAP) and Sec18p (yeast NSF) in homotypic vacuole fusion in vitro. Thus, Sec17p and Sec18p, which are typically involved in heterotypic transport steps, can also be involved in homotypic organelle fusion. We further show that vacuole-to-vacuole fusion is stimulated by certain fatty acyl-coenzyme A compounds in a Sec18p-dependent fashion. Finally, our data suggest the presence of a cytosolic factor which activates vacuole membrane-bound Sec18p.  相似文献   

14.
Summary The release of intact CU(I)8-thionein from copper-resistant copper-loaded yeast cells, strain X 2180-1Aa, has been shown. This copper(I)-thiolate-rich protein was characterized and compared with the chemical and physicochemical properties of intracellular yeast Cu-thionein. The same molecular mass and stoichiometry of 8 mol copper atoms/mol protein was found. No detectable difference between the Cu-thioneins was seen in luminescence emission, electronic absorption in the ultraviolet region, chiroptical data or amino acid composition. The importance of stable Cu(I)-thiolates in Cu-thionein as a safe vehicle for transporting copper in a non-reactive manner is confirmed.  相似文献   

15.
16.
17.
Complete amino acid sequence of yeast thioltransferase (glutaredoxin)   总被引:3,自引:0,他引:3  
The amino acid sequence of a thioltransferase isolated from Saccharomyces cerevisiae was determined. The protein was cleaved by trypsin, Staphylococcus aureus V8 protease, and cyanogen bromide. The peptides generated were purified by reverse phase HPLC. Sequencing of intact protein and its fragments were achieved by automated Edman degradation. The protein contains 106 amino acid residues with two cysteines. Yeast thioltransferase showed 51% structural similarity to pig liver thioltransferase and 34% to E. coli glutaredoxin.  相似文献   

18.
A mutant of yeast lacking proteinase C (carboxypeptidase Y) activity has been found by using a histochemical stain to screen mutagenized colonies. This defect segregates 2:2 in meiotic tetrads. Cell extracts lacked the esterolytic, amidase, and proteolytic activities associated with proteinase C. The absence of proteinase C does not affect mitotic growth and has no obvious effect on the formation of viable ascospores or meiotic segregation. The mutant grows on peptides known to be cleaved by proteinase C in vitro. This finding is consistent with the idea that other enzymes exist in vivo with overlapping substrate specificities.  相似文献   

19.
Theoretical calculations of the NADPH requirement for biomass formation indicate that in yeasts this parameter is strongly dependent on the carbon and nitrogen sources used for growth. Enzyme surveys of NADPH-generating metabolic pathways and radiorespirometric studies demonstrate that in yeasts the HMP pathway is the major source of NADPH. Furthermore, radiorespirometric data suggest that in yeasts the HMP pathway activities are close to the theoretical minimum. It may be concluded that the mitochondrial NADPH oxidation, which in yeasts may yield ATP, is quantitatively not an important process.The inability of C. utilis to utilize the NADH produced in formate oxidation as an extra source of NADPH strongly suggests that transhydrogenase activity is absent. Furthermore, the absence of xylose utilization under anaerobic conditions in most facultatively fermentative yeasts indicates that also in these organisms transhydrogenase activity is absent. This conclusion is supported by the observation that anaerobic xylose utilization is observed only in those yeasts which possess a high activity of an NADH-linked xylose reductase. Hence in these organisms the redox-neutral conversion of xylose to ethanol is possible, since the second step in xylose metabolism is mediated by an NAD+-linked xylitol dehydrogenase.This paper is adapted from a treatise by the same author, entitled: The NADP(H) redox couple in yeast metabolism, that was awarded the Kluyver prize 1986 by the Netherlands Society of Microbiology  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号