共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Examination of the labial epidermis of the lizard Lacerta sicula revealed cells displaying all features of Merkel cells. These cells are located in the stratum basale of epidermal pegs and are arranged in clusters. 相似文献
2.
Summary Immunogold staining failed to show met-enkephalin immunoreactivity in the Merkel cell dense-core granules of rats when examined by electron microscopy, but showed gold particle staining in the Merkel cell dense-core granules of mice and nude mice. Merkel cells of hamster, guinea pig, rabbit, cat and dog were also examined using a similar method, and different antisera dilutions. Immunogold particles were consistently found in the dense-core granules of mice and nude mice at all antisera dilutions, but not in the other species, except in the dog, where a very low labelling response was encountered. Merkel cells from skin touch domes or sinus hair follicles, did not exhibit any difference in peptide expression as far as met-enkephalin immunoreactivity was concerned. In addition, all species studied, including mice and nude mice, did not show leu-enkephalin immunoreactivity in their Merkel cell dense-core granules. It is concluded that species variability in peptide expression occurs in the Merkel cell dense-core granules, and may be closely related to the different methodologies used. 相似文献
3.
4.
Summary The electron-microscopic immunogold method was applied to Merkel cells of adult mice to demonstrate the subcellular localization of met-enkephalin-like immunoreactivity. Post-embedding incubation with metenkephalin antisera showed that the gold particles were associated with the dense-core granules of the Merkel cells. The majority, but not all, of the dense-core granules were strongly labelled. Osmication caused a significant reduction in the number of gold particles on these granules. The nerve terminal associated with the Merkel cell did not show met-enkephalin-like immunoreactivity. To the best of our knowledge, this is the first report of the ultrastructural localization of a positive met-enkephalin immunoreactivity in the dense-core granules of Merkel cells in mice. 相似文献
5.
Summary The renal tubules of the paired pronephros in early larvae (ammocoetes) of two lamprey species, Lampetra fluviatilis and Petromyzon marinus, were studied by use of light-, scanning- and transmission electron microscopy. They consist of (1) a variable number of pronephric tubules (3 to 6), and (2) an excretory duct. By fine-structural criteria, the renal tubules can be divided into 6 segments. Each pronephric tubule is divided into (1) the nephrostome and (2) the proximal tubule, the excretory duct consisting of (3) a common proximal tubule followed by (4) a short intermediate segment, and then by a pronephric duct composed of (5) a cranial and (6) a caudal section. The epithelium of the nephrostome displays bundles of cilia. The cells of the proximal tubule possess a brush border, many endocytotic organelles and a system of canaliculi (tubular invaginations of the basolateral plasmalemma). The same characteristics are encountered in the epithelium of the common proximal tubule; however, the number of these specific organelles decreases along the course of this segment in a posterior direction. In the intermediate segment, the epithelium appears structurally nonspecialized. The cells of the cranial pronephric duct lack a brush border; they have an extensive system of canaliculi and numerous mitochondria. The caudal pronephric duct is lined by an epithelium composed of light and dark cells; the latter are filled with mitochondria and the former contain mucus granules beneath the luminal plasmalemma. The tubular segments found in the pronephros are the same in structure and sequence as in the lamprey opisthonephroi. However, only the nephrostomes and proximal tubules occur serially in the pronephros, while the common proximal tubule, the intermediate segment and the cranial pronephric duct form portions of a single excretory duct.This paper is dedicated to the memory of Professor W. Bargmann, long-time editor of Cell and Tissue Research, the author of a splendid review on the structure of the vertebrate kidney and a master of German scientific writing. 相似文献
6.
Summary Fine structural and cytochemical studies were performed to examine the nature of three types of specific granules found in the atrium of lamprey; specific granules of the atrial muscle cell (ASG), interstitial cell granules (ICG) and endocardial endothelial granules (ESG).Ultrastructurally, ASG and ICG appeared quite similar in size, shape and electron opacity, while ESG were much larger and less dense in opacity than the other two.None of the granules showed positive DAB reaction or acid phosphatase reaction. Only ICG revealed positive chromaffin reaction, which agreed with formaldehyde induced green fluorescence along the atrial lumen. Phosphotungstic acid at low pH stained ICG and ASG strongly positive, and ESG weakly positive. Pronase treatment in Epon sections for 24h digested ASG alone, whereas in glycol-methacrylate embedded sections, ESG were digested first, ASG were digested thoroughly after 30 min, but ICG were not digested completely after 90 min.From these results it can be concluded that the three types of specific granules have different constituents. ESG consist of protein with some polysaccharides; ASG are composed of protein carbohydrate complexes and lack catecholamines; ICG contain catecholamine as well as protein carbohydrate complexes.This work was supported by a grant from the Ministry of Education, JapanThe authors would like to express their gratitude to K. Wasano, M.D. for his technical assistance in fluorescence microscopy 相似文献
7.
Summary Thin sections and freeze-fracture replicas have been used to study the structure of the zonulae occludentes of the branchial chloride cells in young adults of the anadromous lamprey Geotria australis, caught during their downstream migration to the sea and after acclimation to full-strength seawater (35). The chloride cells in the epithelium of the gill filaments of both freshwater- and seawater-acclimated animals form extensive multicellular complexes. In freshwater animals, the majority of chloride cells (64%) are covered by pavement cells and are thus not exposed to the external environment. Most of the other chloride cells are separated from each other by pavement cells or their processes. The zonulae occludentes between chloride cells and pavement cells and between adjacent chloride cells are extensive and characterised by a network of 4 (range 3–7) superimposed strands. In seawater-acclimated animals, the pavement cells cover only 30% of the chloride cells and their processes no longer occur between chloride cells. Whereas the zonulae occludentes between chloride cells and pavement cells are still extensive, those between chloride cells are shallow and comprise only a single strand or two parallel strands. The zonulae occludentes between the chloride cells of lampreys acclimated to seawater are similar to those in the gills of teleosts in seawater, and are thus considered to be leaky and to provide a low-resistance paracellular pathway for the passive transepithelial movement of Na+. 相似文献
8.
Summary Following observation of conical groups of stiff, but motile cilia on the tentacles of the branchial crown of Sabella pavonina, these were examined with the electron microscope. The bundles consist of about 40 unenclosed standard cilia supported by one or two primary sense cells with centrally directed axons of 0.1–0.2 diameter. Axons in the distal portions of the branchial crown occur in small bundles surrounded by a basement membrane. More centrally, glial elements appear and the nerves are surrounded by a collagenous sheath. The branchial nerve trunk shows similarities in organisation to other previously investigated annelid central nervous tissue in that the whole nerve is surrounded by a fibrous sheath central to which there is a layer of glial cells with processes penetrating a central neuropile. The 0.1–0.2 axons commonly occur in glial-enveloped groups of < 40 whilst other axons of larger and mixed diameter are found together.Each tentacle has two branchial nerves on the oral side, and each nerve gives rise to two small 75-axon branches running to each pinnule. The branchial nerves fuse to form the branchial nerve trunk running to the supra-oesophageal ganglia.Sections of the branchial nerves of the branchial crown at progressively more central levels show that the branchial nerve trunk contains enough axons of 0.1–0.2 diameter to account for all the sensory cells on the tentacles. This is taken as evidence for the sensory cells having axons terminating within the central nervous system and that there is no peripheral confluence or fusion of these afferent axons. 相似文献
9.
Summary Merkel cells in the lower labial mucosa of adult rabbits were studied electron microscopically, 9, 21, 28, and 50 days after resection of the mental nerves. By day 9, nerve fibers were completely retracted from the epithelial layer of the mucosa. On and after day 21, Merkel cells were located not only in the basal layer but also in the prickle or more superficial cell layers. The ultrastructure of the migrating Merkel cells was unchanged, both as to the amount and location of the specific cored granules in the cytoplasm, until the cells reached the granular cell layer. The position of the migrating Merkel cells differed from cell to cell, and migration continued for at least 50 days. A remarkably large number of immature Merkel cells was observed in the basal and suprabasal cell layers of the denervated epithelium even by day 50. Therefore, the possibility of the reproduction of Merkel cells exists. The migrating Merkel cells, as well as the keratinocytes in the same cell layer, had degenerated drastically in the parakeratinized cell layer. This seems to indicate that the Merkel cells belong to the line of keratinocytes. 相似文献
10.
Summary The ultrastructure of a differentiated cell type in the epidermis of two species of teleost fish, Ictalurus melas and Phoxinus phoxinus, is described. This cell type has a synaptic association with nerve fibres, microvillus-like peripheral processes, and membrane-bounded inclusions, which together are the diagnostic features of the Merkel cells of tetrapod vertebrates. Other cytoplasmic features are shared with the epithelial cells. The appearance of the membrane-bounded granules depends on the fixative used; after fixation with glutaraldehyde the granules are of a size and electron-density comparable to that found in tetrapod Merkel cells, but after fixing in osmium tetroxide the granules are inconspicuous.Our thanks are due to Mr. A.C. Wheeler of the British Museum (Natural History) for help with the identification of the species of Ictalurus, and to Mr. E. Perry for technical assistance. One author (EBL) was supported by a SRC research studentship 相似文献
11.
Here, we provide evidence for the neural crest origin of mammalian Merkel cells. Together with nerve terminals, Merkel cells form slowly adapting cutaneous mechanoreceptors that transduce steady indentation in hairy and glabrous skin. We have determined the ontogenetic origin of Merkel cells in Wnt1-cre/R26R compound transgenic mice, in which neural crest cells are marked indelibly. Merkel cells in whiskers and interfollicular locations express the transgene, beta-galactosidase, identifying them as neural crest descendants. We thus conclude that murine Merkel cells originate from the neural crest. 相似文献
12.
We report here the first evidence for interleukin-17, a pro-inflammatory cytokine, in cyclostomes. To detect the novel molecules
involved in the immune response in the skin of the lamprey Lethenteron japonicum, subtractive hybridization was performed with 6-h-cultured skin cells with or without lipopolysaccharide (LPS). In approximately
100 partially sequenced clones analyzed, we identified an interesting sequence similar to that of the IL-17 genes in teleosts and mammals. Subsequent rapid amplification of cDNA ends was used to obtain the cDNA of lamprey IL-17 (LampIL-17)
that contains a 519-bp open reading frame encoding a mature protein of 154 amino acids and a 19-residue NH2-terminal signal peptide. The phylogenetic tree indicated that LampIL-17 is clustered into IL-17D, which is a subgroup of
the IL-17 family. Southern blot analysis showed that the lamprey harbors a single copy of the LampIL-17 gene in its genome. The LampIL-17 gene was constitutively expressed in most tissues examined as well as in the skin, where the basal layer epithelial cells
expressed LampIL-17 mRNA. Real-time-polymerase chain reaction (RT-PCR) demonstrated that the LampIL-17 gene expression in LPS-stimulated skin cells tended to be greater than that in non-stimulated cells. These results suggest
that LampIL-17 is responsible for defense against bacterial infections in the lamprey skin.
Nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession number AB303391. 相似文献
13.
F. J. Alvarez C. Cervantes R. Villalba I. Blasco R. Martínez-Murillo J. M. Polak Dr. JOsé Rodrigo 《Cell and tissue research》1988,254(2):429-437
Summary Calcitonin gene-related peptide (CGRP)-and vasoactive intestinal polypeptide (VIP)-immunoreactivity were observed to coexist in Merkel cells of cats. No differences in peptide content were found between Merkel cells located in epithelia of the hard palate, in hairy and glabrous skin of the upper lip, and in vibrissae follicles. CGRP-and VIP-immunoreactive nerve fibres were also found near CGRP/VIP-immunoreactive Merkel cells. In the vibrissae follicles some CGRP-and VIP-immunoreactive nerve terminals end abutting on the glassy membrane. Other CGRP immunoreactive nerve fibres penetrate the epithelium of the skin and end within it. Electron microscopy of vibrissae follicles revealed that Merkel cell neuntes are not immunostained and that immunostained nerve fibres form unmyelinated bundles before ending freely. Thus, CGRP-and VIP immunoreactive nerve fibres in cat skin do not end as Merkel cell neuntes but as different kinds of free nerve endings. 相似文献
14.
Ingrid Moll 《Cell and tissue research》1994,277(1):131-138
The distribution of Merkel cells in fetal and adult terminal hair follicles of human scalp was studied immunohistochemically using cytokeratin (CK) 20 as a specific Merkel cell marker. In hair follicles of adult scalp, abundant Merkel cells were found enriched in two belt-like clusters, one in the deep infundibulum and one in the isthmus region. No Merkel cells were found in the deep follicular portions including the bulb, or in the dermis. In early fetal hair follicles (bulbous peg stage), Merkel cells were only detected in the basal layer of the developing infundibulum but not in deeper follicular areas. In later stages, Merkel cells were also present in the isthmus and bulge. No Merkel cells were seen in the dermis around developing hair follicles. Nerve growth factor receptor was not only present in nerves but was found to be widely distributed within fetal skin. In adult skin, this receptor was localized to the basal cell layers of the outer root sheath of the bulb and the suprabulbar area, but was not detectable in the areas containing Merkel cells. The present study localizing Merkel cells within the permanent hair follicle structures close to their possible stem cells suggests that they have paracrine functions. 相似文献
15.
Merkel cells are specialized cells in the skin that are important for proper neural encoding of light touch stimuli. Conflicting evidence suggests that these cells are lineally descended from either the skin or the neural crest. To address this question, we used epidermal (Krt14Cre) and neural crest (Wnt1Cre) Cre-driver lines to conditionally delete Atoh1 specifically from the skin or neural crest lineages, respectively, of mice. Deletion of Atoh1 from the skin lineage resulted in loss of Merkel cells from all regions of the skin, while deletion from the neural crest lineage had no effect on this cell population. Thus, mammalian Merkel cells are derived from the skin lineage. 相似文献
16.
Summary Examination of barbels of the carp (Cyprinus carpio) revealed cells showing the characteristics of Merkel cells. Some ultrastructural features of these cells suggest a secretory function. 相似文献
17.
Dr. H. Björklund C. -J. Dalsgaard C. -E. Jonsson A. Hermansson 《Cell and tissue research》1986,243(1):51-57
Summary Non-hairy and hairy human skin were investigated with the use of the indirect immunohistochemical technique employing antisera to different neuronal and non-neuronal structural proteins and neurotransmitter candidates. Fibers immunoreactive to antisera against neurofilaments, neuron-specific enolase, myelin basic protein, protein S-100, substance P, neurokinin A, neuropeptide Y, tyrosine hydroxylase and vasoactive intestinal polypeptide (VIP) were detected in the skin with specific distributional patterns. Neurofilament-, neuron-specific enolase-, myelin basic protein-, protein S-100-, substance P-, neurokinin A-and vasoactive intestinal polypeptide (VIP)-like immunoreactivities were found in or in association with sensory nerves; moreover, neuron-specific enolase-, myelin basic protein-, protein S-100, neuropeptide Y-, tyrosine hydroxylase- and vasoactive intestinal polypeptide (VIP)-like immunoreactivities occurred in or in association with autonomic nerves. It was concluded that antiserum against neurofilaments labels sensory nerve fibers exclusively, whereas neuron-specific enolase-, myelin basic protein- and protein S-100-like immunoreactivities are found in or in association with both sensory and autonomic nerves. Substance P- and neurokinin A-like immunoreactivities were observed only in sensory nerve fibers, and neuropeptide Y- and tyrosine hydroxylase-like immunoreactivities occurred only in autonomic nerve fibers, whereas vasoactive intestinal polypeptide (VIP)-like immunoreactivity was seen predominantly in autonomic nerves, but also in some sensory nerve fibers. 相似文献
18.
Comparative studies were performed on two native lamprey species, Pacific lamprey (Lampetra tridentata) and western brook lamprey (Lampetra richardsoni) from the Pacific coast along with sea lamprey (Petromyzon marinus) from the Great Lakes, to investigate their bile acid production and release. HPLC and ELISA analyses of the gall bladders and liver extract revealed that the major bile acid compound from Pacific and western brook larval lampreys was petromyzonol sulfate (PZS), previously identified as a migratory pheromone in larval sea lamprey. An ELISA for PZS has been developed in a working range of 20 pg-10 ng per well. The tissue concentrations of PZS in gall bladder were 127.40, 145.86, and 276.96 micro g/g body mass in sea lamprey, Pacific lamprey, and western brook lamprey, respectively. Releasing rates for PZS in the three species were measured using ELISA to find that western brook and sea lamprey released PZS 20 times higher than Pacific lamprey did. Further studies are required to determine whether PZS is a chemical cue in Pacific and western brook lampreys. 相似文献
19.
Skin Innervation and Its Effects on the Epidermis 总被引:2,自引:0,他引:2
Hsieh ST Lin WM Chiang HY Huang IT Ko MH Chang YC Chen WP 《Journal of biomedical science》1997,4(5):264-268
Sensory innervation of the skin subserves protective sensations for the body to prevent thermal and noxious injuries. Neurophysiologically, they belong to the categories of A and C fibers, usually with caliber less than one µm in diameter. Morphological demonstration of the terminals of these nerves in the epidermis has been recognized recently by sensitive immunocytochemistry and an axonal marker, the protein gene product 9.5 (PGP). PGP is a ubiquitin C-terminal hydrolase, which is abundantly present in the nervous system, and particularly enriched in the unmyelinated nerves. Sensory nerves positive for PGP arise from the dorsal root ganglion, pass through the dermis, parallel the epidermis-dermis border, penetrate the basement membrane, move vertically and upwards in the epidermis with tortuous course and knobby appearance, and finally terminate at the granular layers of the epidermis. In rodents, denervation of the skin results in degeneration of epidermal nerves within 48 h of nerve transection, and thinning of the epidermis. In humans, application of this technique to evaluate disorders of the peripheral nervous system makes study of the degeneration of sensory nerve terminals possible. Patients with sensory neuropathy had fewer epidermal nerves than normal subjects, consistent with the notion of distal axonopathy. This approach has the potential to evaluate human sensory neuropathy in temporal and spatial domains. In addition, the influences of epidermal denervation open a new field to explore the interactions between sensory nerves and keratinocytes. 相似文献
20.
Lixin Wang Marita Hilliges Tomas Jernberg Desirée Wiegleb-Edström Olle Johansson 《Cell and tissue research》1990,261(1):25-33
Summary Sections of human skin were processed according to the indirect immunofluorescence technique with a rabbit antiserum against human protein gene product 9.5 (PGP 9.5). Immunoreactivity was detected in intraepidermal and dermal nerve fibres and cells. The intraepidermal nerves were varicose or smooth with different diameters, running as single processes or branched, straight or bent, projecting in various directions and terminating in the stratum basale, spinosum or granulosum. The density of the intraepidermal nerves varied between the different skin areas investigated. PGP 9.5-containing axons of the lower dermis were found in large bundles. They separated into smaller axon bundles within the upper dermis, entering this portion of the skin perpendicular to the surface. Then they branched into fibres mainly arranged parallel to the epidermal-dermal junctional zone. However, the fibres en route to the epidermis traversed the upper dermis more or less perpendicularly. Furthermore, immunoreactive dermal nerve fibres were found in the Meissner corpuscles, the arrector pili muscles, hair follicles, around the eccrine and apocrine sweat glands and around certain blood vessels. Such fibres were also observed around most subcutaneous blood vessels, sometimes heavily innervating these structures. Numerous weakly-to-strongly PGP 9.5-immunoreactive cells were found both in the epidermis and in the dermis. 相似文献