首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Citrate synthase (EC 4.1.3.7) was prepared from nine species of blue-green bacteria. In every case the citrate synthase was of the large type otherwise found only in Gram-negative bacteria.In addition to inhibition by -oxoglutarate, the enzymes were all sensitive to inhibition by succinyl coenzyme A, acting competitively with respect to acetyl coenzyme A. Desensitization by potassium chloride and a sigmoidal dependence of inhibition on succinyl coenzyme A concentration suggested the possibility of an allosteric mechanism. Multiple-inhibition analysis using pairs of the competitive inhibitors succinyl coenzyme A, bromoacetyl coenzyme A and ATP confirmed the existence of a distinct site for succinyl coenzyme A.It is suggested that the specific sensitivity of bluegreen bacterial citrate synthases to succinyl coenzyme A, as well as to -oxoglutarate, is related to the particular metabolic role of the enzyme in these organisms. The absence of a complete energy-yielding citric acid cycle, resulting from the lack of -oxoglutarate dehydrogenase, confers a strictly biosynthetic role on citrate synthase, which initiates a branched pathway leading to the two end-products -oxoglutarate and succinyl coenzyme A. Inhibition of the enzyme by these compounds constitutes a plausible regulatory mechanism.  相似文献   

5.
6.
C Leitzmann  J Y Wu  P D Boyer 《Biochemistry》1970,9(11):2338-2346
  相似文献   

7.
8.
gamma-Carboxymuconolactone decarboxylase (EC 4.1.1.44) and beta-ketoadipate succinyl coenzyme A transferase (EC 2.8.3.6) mediate different steps in the beta-ketoadipate pathway. Antisera prepared against the Pseudomonas putida transferase cross-reacted immunologically with the decarboxylase from the same organism. The transferase is formed by association of two nonidentical protein subunits. The NH2-terminal amino acid sequences of the two nonidentical transferase subunits resembled each other and also were similar to the NH2-terminal amino acid sequence of the decarboxylase.  相似文献   

9.
10.
11.
12.
13.
14.
S P Williams  W A Bridger 《Biochemistry》1987,26(14):4483-4487
Succinyl-CoA synthetase of Escherichia coli has an alpha 2 beta 2 subunit structure. The enzyme shows strict half-sites reactivity with respect to the phosphorylation of a histidine residue in the alpha subunit that represents a step in catalysis. Several lines of evidence indicate that this behavior may result from cooperative interactions between alternatingly functional active sites, so that subsequent steps in catalysis at one site may be promoted by phosphoryl transfer to the site on the neighboring half of the molecule. This study is directed toward learning more about the nature of these cooperative interactions. Here we have used positional isotope exchange (i.e., exchange of 18O between the beta, gamma bridge and the beta nonbridge position of ATP) as a test for transient bisphosphorylation. Succinyl-CoA synthetase was ATP) as a test for transient bisphosphorylation. Succinyl-CoA synthetase was prepared in which one of the two active sites was thiophosphorylated; this species thus has one of its two active-site histidine residues occupied and unavailable for further reaction with ATP. Treatment of this monothiophosphorylated enzyme with [beta, gamma-18O]ATP resulted in no significant scrambling of isotope into the nonbridge position, clearly indicating that the enzyme does not undergo even transient bisphosphorylation. We interpret the results in terms of a model of catalysis in which phosphoryl transfer to the second site occurs in concerted fashion with transfer from the first.  相似文献   

15.
16.
We have previously shown that micromolar concentrations of GDP stimulate the GTP-mediated phosphorylation of p36, the subunit of succinyl-CoA synthetase (SCS), in lysates prepared fromDictyostelium discoideum. In this study, we report that this phenomenon represents an enhanced catalytic capacity of SCS to form the phosphoenzyme intermediate. Low concentrations of GDP stimulate phosphoenzyme formation by either GTP, or succinyl-CoA and Pi. Under these conditions GDP enhances the apparent rate of phosphoenzyme formation but does not significantly alter the fraction of phosphorylated enzyme. This effect is retained during purification of the protein and is also observed with purified pig heart SCS, indicating that GDP directly alters the enzyme to enhance its rate of phosphorylation. Under these conditions, GDP does not function at the catalytic site, implying an allosteric regulation of SCS.Abbreviations used SCS succinyl-CoA synthetase - P i inorganic phosphate - NDP nucleotide diphosphate - NTP nucleotide triphosphate - PFK phosphofructokinase A-form; ADP-forming SCS; G-form; GDP-forming SCS  相似文献   

17.
18.
Succinyl-CoA synthetase has an (alpha beta)2 subunit structure and shows half-of-the-sites reactivity with respect to the formation of the phosphohistidyl residues that acts as a catalytic intermediate. Adenosine 5'-O-(3-thio)triphosphate has been found to be a substrate, but the overall maximum velocity is 3 orders of magnitude lower than that seen with ATP. Moreover, steps of the reaction involving thiophosphoryl transfer are much slower than the corresponding phosphoryl transfers. These properties of adenosine 5'-O-(3-thio)triphosphate as a substrate have been exploited to test the concept of alternating sites catalytic cooperativity proposed earlier as a rationale for the subunit structure of succinyl-CoA synthetase. As predicted by this model for catalysis, the rate of discharge of thiophosphate from the enzyme in the presence of succinate and CoA is stimulated by ATP. Neither of two nonhydrolyzable analogs of ATP has an equivalent effect. The results indicate that the transfer of the thiophosphoryl group from the enzyme to succinate at one active site is not favored until the neighboring active site is phosphorylated by ATP, with accompanying reciprocal changes in the conformations of the two halves of the enzyme molecule.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号