首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Protein tyrosine (Tyr) nitration is a post‐translational modification yielding 3‐nitrotyrosine (NO2–Tyr). Formation of NO2–Tyr is generally considered as a marker of nitro‐oxidative stress and is involved in some human pathophysiological disorders, but has been poorly studied in plants. Leghemoglobin (Lb) is an abundant hemeprotein of legume nodules that plays an essential role as an O2 transporter. Liquid chromatography coupled to tandem mass spectrometry was used for a targeted search and quantification of NO2–Tyr in Lb. For all Lbs examined, Tyr30, located in the distal heme pocket, is the major target of nitration. Lower amounts were found for NO2–Tyr25 and NO2–Tyr133. Nitrated Lb and other as yet unidentified nitrated proteins were also detected in nodules of plants not receiving and were found to decrease during senescence. This demonstrates formation of nitric oxide (˙NO) and by alternative means to nitrate reductase, probably via a ˙NO synthase‐like enzyme, and strongly suggests that nitrated proteins perform biological functions and are not merely metabolic byproducts. In vitro assays with purified Lb revealed that Tyr nitration requires  + H2O2 and that peroxynitrite is not an efficient inducer of nitration, probably because Lb isomerizes it to . Nitrated Lb is formed via oxoferryl Lb, which generates nitrogen dioxide and tyrosyl radicals. This mechanism is distinctly different from that involved in heme nitration. Formation of NO2–Tyr in Lb is a consequence of active metabolism in functional nodules, where Lb may act as a sink of toxic peroxynitrite and may play a protective role in the symbiosis.  相似文献   

3.
Calmodulin (CaM) functions depend on interactions with CaM‐binding proteins, regulated by . Induced structural changes influence the affinity, kinetics, and specificities of the interactions. The dynamics of CaM interactions with neurogranin (Ng) and the CaM‐binding region of /calmodulin‐dependent kinase II (CaMKII290−309) have been studied using biophysical methods. These proteins have opposite dependencies for CaM binding. Surface plasmon resonance biosensor analysis confirmed that and CaM interact very rapidly, and with moderate affinity ( ). Calmodulin‐CaMKII290−309 interactions were only detected in the presence of , exhibiting fast kinetics and nanomolar affinity ( ). The CaM–Ng interaction had higher affinity under ‐depleted ( and k −1 = 1.6 × 10−1s−1) than ‐saturated conditions ( ). The IQ motif of Ng (Ng27−50) had similar affinity for CaM as Ng under ‐saturated conditions ( ), but no interaction was seen under ‐depleted conditions. Microscale thermophoresis using fluorescently labeled CaM confirmed the surface plasmon resonance results qualitatively, but estimated lower affinities for the Ng ( ) and CaMKII290−309( ) interactions. Although CaMKII290−309 showed expected interaction characteristics, they may be different for full‐length CaMKII. The data for full‐length Ng, but not Ng27−50, agree with the current model on Ng regulation of /CaM signaling.  相似文献   

4.
Yen‐Tsung Huang 《Biometrics》2019,75(4):1191-1204
Mediation effects of multiple mediators are determined by two associations: one between an exposure and mediators (‐) and the other between the mediators and an outcome conditional on the exposure (‐). The test for mediation effects is conducted under a composite null hypothesis, that is, either one of the ‐ and ‐ associations is zero or both are zeros. Without accounting for the composite null, the type 1 error rate within a study containing a large number of multimediator tests may be much less than the expected. We propose a novel test to address the issue. For each mediation test , , we examine the ‐ and ‐ associations using two separate variance component tests. Assuming a zero‐mean working distribution with a common variance for the element‐wise ‐ (and ‐) associations, score tests for the variance components are constructed. We transform the test statistics into two normally distributed statistics under the null. Using a recently developed result, we conduct hypothesis tests accounting for the composite null hypothesis by adjusting for the variances of the normally distributed statistics for the ‐ and ‐ associations. Advantages of the proposed test over other methods are illustrated in simulation studies and a data application where we analyze lung cancer data from The Cancer Genome Atlas to investigate the smoking effect on gene expression through DNA methylation in 15 114 genes.  相似文献   

5.
In freshwaters, algal species are exposed to different inorganic nitrogen (Ni) sources whose incorporation varies in biochemical energy demand. We hypothesized that due to the lesser energy requirement of ammonium ()‐use, in contrast to nitrate ()‐use, more energy remains for other metabolic processes, especially under CO2‐ and phosphorus (Pi) limiting conditions. Therefore, we tested differences in cell characteristics of the green alga Chlamydomonas acidophila grown on or under covariation of CO2 and Pi‐supply in order to determine limitations, in a full‐factorial design. As expected, results revealed higher carbon fixation rates for ‐grown cells compared to growth with under low CO2 conditions. ‐grown cells accumulated more of the nine analyzed amino acids, especially under Pi‐limited conditions, compared to cells provided with . This is probably due to a slower protein synthesis in cells provided with . In contrast to our expectations, compared to ‐grown cells ‐grown cells had higher photosynthetic efficiency under Pi‐limitation. In conclusion, growth on the Ni‐source did not result in a clearly enhanced Ci‐assimilation, as it was highly dependent on Pi and CO2 conditions (replete or limited). Results are potentially connected to the fact that C. acidophila is able to use only CO2 as its inorganic carbon (Ci) source.  相似文献   

6.
7.
Accurate estimates of heritability () are necessary to assess adaptive responses of populations and evolution of fitness‐related traits in changing environments. For plants, estimates generally rely on maternal progeny designs, assuming that offspring are either half‐sibs or unrelated. However, plant mating systems often depart from half‐sib assumptions, this can bias estimates. Here, we investigate how to accurately estimate in nonmodel species through the analysis of sibling designs with a moderate genotyping effort. We performed simulations to investigate how microsatellite marker information available for only a subset of offspring can improve estimates based on maternal progeny designs in the presence of nonrandom mating, inbreeding in the parental population or maternal effects. We compared the basic family method, considering or not adjustments based on average relatedness coefficients, and methods based on the animal model. The animal model was used with average relatedness information, or with hybrid relatedness information: associating one‐generation pedigree and family assumptions, or associating one‐generation pedigree and average relatedness coefficients. Our results highlighted that methods using marker‐based relatedness coefficients performed as well as pedigree‐based methods in the presence of nonrandom mating (i.e. unequal male reproductive contributions, selfing), offering promising prospects to investigate in situ heritabilities in natural populations. In the presence of maternal effects, only the use of pairwise relatednesses through pedigree information improved the accuracy of estimates. In that case, the amount of father‐related offspring in the sibling design is the most critical. Overall, we showed that the method using both one‐generation pedigree and average relatedness coefficients was the most robust to various ecological scenarios.  相似文献   

8.
The fixation of new deleterious mutations is analyzed for a randomly mating population of constant size with no environmental or demographic stochasticity. Mildly deleterious mutations are far more important in causing loss of fitness and eventual extinction than are lethal and semilethal mutations in populations with effective sizes, Ne, larger than a few individuals. If all mildly deleterious mutations have the same selection coefficient, s against heterozygotes and 2s against homozygotes, the mean time to extinction, , is asymptotically proportional to for 4Nes > 1. Nearly neutral mutations pose the greatest risk of extinction for stable populations, because the magnitude of selection coefficient that minimizes is about ? = 0.4/Ne. The influence of variance in selection coefficients among mutations is analyzed assuming a gamma distribution of s, with mean and variance . The mean time to extinction increases with variance in selection coefficients if is near ?, but can decrease greatly if is much larger than ?. For a given coefficient of variation of , the mean time to extinction is asymptotically proportional to for . When s is exponentially distributed, (c = 1) is asymptotically proportional to . These results in conjunction with data on the rate and magnitude of mildly deleterious mutations in Drosophila melanogaster indicate that even moderately large populations, with effective sizes on the order of Ne = 103, may incur a substantial risk of extinction from the fixation of new mutations.  相似文献   

9.
A mother can influence a trait in her offspring both by the genes she transmits (Mendelian inheritance) and by maternal attributes that directly affect that trait in her offspring (maternal inheritance). Maternal inheritance can alter the direction, rate, and duration of adaptive evolution from standard Mendelian models and its impact on adaptive evolution is virtually unexplored in natural populations. In a hierarchical quantitative genetic analysis to determine the magnitude and structure of maternal inheritance in the winter annual plant, Collinsia verna, I consider three potential models of inheritance. These range from a standard Mendelian model estimating only direct (i.e., Mendelian) additive and environmental variance components to a maternal inheritance model estimating six additive and environmental variance components: direct additive and environmental variances; maternal additive and environmental variances; and the direct-maternal additive () and environmental covariances. The structure of maternal inheritance differs among the 10 traits considered at four stages in the life cycle. Early in the life cycle, seed weight and embryo weight display substantial , a negative , and a positive . Subsequently, cotyledon diameter displays and of roughly the same magnitude and negative . For fall rosettes, leaf number and length are best described by a Mendelian model. In the spring, leaf length displays maternal inheritance with significant and and a negative . All maternally inherited traits show significant negative . Predicted response to selection under maternal inheritance depends on and as well as . Negative results in predicted responses in the opposite direction to selection for seed weight and embryo weight and predicted responses near zero for all subsequent maternally inherited traits. Maternal inheritance persists through the life cycle of this annual plant for a number of size-related traits and will alter the direction and rate of evolutionary response in this population.  相似文献   

10.
When establishing a treatment in clinical trials, it is important to evaluate both effectiveness and toxicity. In phase II clinical trials, multinomial data are collected in m‐stage designs, especially in two‐stage () design. Exact tests on two proportions, for the response rate and for the nontoxicity rate, should be employed due to limited sample sizes. However, existing tests use certain parameter configurations at the boundary of null hypothesis space to determine rejection regions without showing that the maximum Type I error rate is achieved at the boundary of null hypothesis. In this paper, we show that the power function for each test in a large family of tests is nondecreasing in both and ; identify the parameter configurations at which the maximum Type I error rate and the minimum power are achieved and derive level‐α tests; provide optimal two‐stage designs with the least expected total sample size and the optimization algorithm; and extend the results to the case of . Some R‐codes are given in the Supporting Information.  相似文献   

11.
12.
Enhanced soil ammonium () concentrations in wetlands often lead to graminoid dominance, but species composition is highly variable. Although is readily taken up as a nutrient, several wetland species are known to be sensitive to high concentrations or even suffer toxicity, particularly at low soil pH. More knowledge about differential graminoid responses to high availability in relation to soil pH can help to better understand vegetation changes. The responses of two wetland graminoids, Juncus acutiflorus and Carex disticha, to high (2 mmol·l?1) versus control (20 μmol·l?1) concentrations were tested in a controlled hydroponic set up, at two pH values (4 and 6). A high concentration did not change total biomass for these species at either pH, but increased C allocation to shoots and increased P uptake, leading to K and Ca limitation, depending on pH treatment. More than 50% of N taken up by C. disticha was invested in N‐rich amino acids with decreasing C:N ratio, but only 10% for J. acutiflorus. Although both species appeared to be well adapted to high loadings in the short term, C. disticha showed higher classic detoxifying responses that are early warning indicators for decreased tolerance in the long term. In general, the efficient aboveground biomass allocation, P uptake and N detoxification explain the competitive strength of wetland graminoids at the expense of overall biodiversity at high loading. In addition, differential responses to enhanced affect interspecific competition among graminoids and lead to a shift in vegetation composition.  相似文献   

13.
Comparisons of to can provide insights into the evolutionary processes that lead to differentiation, or lack thereof, among the phenotypes of different groups (e.g., populations, species), and these comparisons have been performed on a variety of taxa, including humans. Here, I show that for neutrally evolving (i.e., by genetic drift, mutation, and gene flow alone) quantitative characters, the two commonly used estimators have somewhat different interpretations in terms of coalescence times, particularly when the number of groups that have been sampled is small. A similar situation occurs for estimators. Consequently, when observations come from only a small number of groups, which is not an unusual situation, it is important to match estimators appropriately when comparing to .  相似文献   

14.
The potential ecological impacts of switchgrass (Panicum virgatum L.), as a biofuel feedstock, have been assessed under different environmental conditions. However, limited information is available in understanding the integrated analysis of nitrogen (N) dynamics including soil nitrate (), nitrous oxide (N2O) emissions, and leaching under switchgrass land management. The specific objective was to explore N dynamics for 2009 through 2015 in switchgrass seeded to a marginally yielding cropland based on treatments of N fertilization rate (N rate; low, 0; medium, 56; high, 112 kg N ha?1) and landscape position (shoulder, backslope, and footslope). Our findings indicated that N rate impacted soil (0–5 cm depth) and surface N2O fluxes but did not impact leaching during the observed years. Medium N (56 kg N ha?1) was the optimal rate for increasing biomass yield with reduced environmental problems. Landscape position impacted the N dynamics. At the footslope position, soil , soil leaching, and N2O fluxes were higher than the other landscape positions. Soil N2O fluxes and leaching had downward trends over the observed years. Growing switchgrass on marginally yielding croplands can store soil N, reduce N losses via leaching, and mitigate N2O emissions from soils to the atmosphere over the years. Switchgrass seeded on marginally yielding croplands can be beneficial in reducing N losses and can be grown as a sustainable bioenergy crop on these marginal lands.  相似文献   

15.
Models of the maintenance of genetic variance in a polygenic trait have usually assumed that population size is infinite and that selection is weak. Consequently, they will overestimate the amount of variation maintained in finite populations. I derive approximations for the equilibrium genetic variance, in finite populations under weak stabilizing selection for triallelic loci and for an infinite “rare alleles” model. These are compared to results for neutral characters, to the “Gaussian allelic” model, and to Wright's approximation for a biallelic locus under arbitrary selection pressures. For a variety of parameter values, the three-allele, Gaussian, and Wrightian approximations all converge on the neutral model when population size is small. As expected, far less equilibrium genetic variance can be maintained if effective population size, N, is on the order of a few hundred than if N is infinite. All of the models predict that comparisons among populations with N less than about 104 should show substantial differences in . While it is easier to maintain absolute when alleles interact to yield dominance or overdominance for fitness, less additivity also makes more susceptible to differences in N. I argue that experimental data do not seem to reflect the predicted degree of relationship between N and . This calls into question the ability of mutation-selection balance or simple balancing selection to explain observed . The dependence of on N could be used to test the adequacy of mutation-selection balance models.  相似文献   

16.
Using nonlinear optical microscopy of coherent antistokes Raman scattering (CARS), second harmonic generation (SHG) and two‐photo excitation fluorescence, we in situ observed how the collagen and the bone grow synergistically and competitively during nascent biological evolution. The and ions were first observed to be dispersed in the liquid environment, and the collagen was observed 2 days later. With the help of the collagen, the and ions gradually moved closer to the collagen, and then the bone was produced in the forms of CaCO3 and CaPO3. When the bone was completed with the help of the collagen, the collagen gradually disappeared. The biological evolution of snail bone and collagen can be well revealed by CARS and SHG, and in addition, the biological evolution of structure and morphology can be clearly observed day by day.  相似文献   

17.
The immediate capacity for adaptation under current environmental conditions is directly proportional to the additive genetic variance for fitness, VA(W). Mean absolute fitness, , is predicted to change at the rate , according to Fisher's Fundamental Theorem of Natural Selection. Despite ample research evaluating degree of local adaptation, direct assessment of VA(W) and the capacity for ongoing adaptation is exceedingly rare. We estimated VA(W) and in three pedigreed populations of annual Chamaecrista fasciculata, over three years in the wild. Contrasting with common expectations, we found significant VA(W) in all populations and years, predicting increased mean fitness in subsequent generations (0.83 to 6.12 seeds per individual). Further, we detected two cases predicting “evolutionary rescue,” where selection on standing VA(W) was expected to increase fitness of declining populations (< 1.0) to levels consistent with population sustainability and growth. Within populations, inter‐annual differences in genetic expression of fitness were striking. Significant genotype‐by‐year interactions reflected modest correlations between breeding values across years, indicating temporally variable selection at the genotypic level that could contribute to maintaining VA(W). By directly estimating VA(W) and total lifetime , our study presents an experimental approach for studies of adaptive capacity in the wild.  相似文献   

18.
Information about how bird species respond to increasing density conditions through either space‐use sharing or increased territoriality, and how those changes affect fitness, is essential for effective conservation planning. We used a case study of endangered Red‐cockaded Woodpeckers Leuconotopicus borealis (RCW) to address these questions. We documented over 36 000 locations from 44 RCW groups in three density conditions on two sites in South Carolina, USA, between April 2013 and March 2015. The frequency of neighbouring group interactions differed among density conditions and was highest for high‐density groups. RCW home‐ranges and core‐areas were larger under low‐density conditions ( = 88.4 ha,  = 21.0 ha) than under medium ( = 68.29 ha,  = 16.6 ha) and high‐density ( = 76.3 ha,  = 18.6 ha) conditions. Neighbouring RCWs maintained overlapping home‐ranges with nearly exclusive core‐areas across density conditions, but overlap tended to increase as neighbouring group density increased. Under high‐density conditions, home‐range overlap correlated inversely with clutch size (β ± se = ?0.19 ± 0.09), nestling production (β ± se = ?0.37 ± 0.09) and fledgling production (β ± se = ?0.34 ± 0.08). Our results indicate that RCWs dedicate more effort to territorial defence under high‐density conditions, potentially at the expense of greater foraging efficiency and time allocated to reproduction, as evidenced by reduced fitness. Large home‐range overlap indicated limited territoriality farther away from cavity trees, but the existence of exclusive core‐areas suggests that RCW groups defend habitat closer to cavity trees. Thiessen partitions used to allocate critical foraging habitat offered comprehensive habitat protection for RCW but appear flawed for spatially explicit habitat assessments because they do not accurately delineate space used by individual RCW groups.  相似文献   

19.
Polarization‐dependent second‐harmonic generation (P‐SHG) microscopy is used to characterize molecular nonlinear optical properties of collagen and determine a three‐dimensional (3D) orientation map of collagen fibers within a pig tendon. C6 symmetry is used to determine the nonlinear susceptibility tensor components ratios in the molecular frame of reference and , where the latter is a newly extracted parameter from the P‐SHG images and is related to the chiral structure of collagen. The is observed for collagen fibers tilted out of the image plane, and can have positive or negative values, revealing the relative polarity of collagen fibers within the tissue. The P‐SHG imaging was performed using a linear polarization‐in polarization‐out (PIPO) method on thin sections of pig tendon cut at different angles. The nonlinear chiral properties of collagen can be used to construct the 3D organization of collagen in the tissue and determine the orientation‐independent molecular susceptibility ratios of collagen fibers in the molecular frame of reference.   相似文献   

20.
Nitrous oxide (N2O) is a potent greenhouse gas and major component of the net global warming potential of bioenergy feedstock cropping systems. Numerous environmental factors influence soil N2O production, making direct correlation difficult to any one factor of N2O fluxes under field conditions. We instead employed quantile regression to evaluate whether soil temperature, water‐filled pore space (WFPS), and concentrations of soil nitrate () and ammonium () determined upper bounds for soil N2O flux magnitudes. We collected data over 6 years from a range of bioenergy feedstock cropping systems including no‐till grain crops, perennial warm‐season grasses, hybrid poplar, and polycultures of tallgrass prairie species each with and without nitrogen (N) addition grown at two sites. The upper bounds for soil N2O fluxes had a significant and positive correlation with all four environmental factors, although relatively large fluxes were still possible at minimal values for nearly all factors. The correlation with was generally weaker, suggesting it is less important than in driving large fluxes. Quantile regression slopes were generally lower for unfertilized perennials than for other systems, but this may have resulted from a perpetual state of nitrogen limitation, which prevented other factors from being clear constraints. This framework suggests efforts to reduce concentrations of in the soil may be effective at reducing high‐intensity periods—”hot moments”—of N2O production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号