首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
4.
The hypersensitive response (HR) of plants is one of the earliest responses to prevent pathogen invasion. A brown dot lesion on a leaf is visual evidence of the HR against the blast fungus Magnaporthe oryzae in rice, but tracking the browning process has been difficult. In this study, we induced the HR in rice cultivars harboring the blast resistance gene Pit by inoculation of an incompatible M. oryzae strain, which generated a unique resistance lesion with a brown ring (halo) around the brown fungal penetration site. Inoculation analysis using a plant harboring Pit but lacking an enzyme that catalyzes tryptamine to serotonin showed that high accumulation of the oxidized form of serotonin was the cause of the browning at the halo and penetration site. Our analysis of the halo browning process in the rice leaf revealed that abscisic acid enhanced biosynthesis of serotonin under light conditions, and serotonin changed to the oxidized form via hydrogen peroxide produced by light. The dramatic increase in serotonin, which has a high antioxidant activity, suppressed leaf damage outside the halo, blocked expansion of the browning area and attenuated inhibition of plant growth. These results suggest that serotonin helps to reduce biotic stress in the plant by acting as a scavenger of oxygen radicals to protect uninfected tissues from oxidative damage caused by the HR. The deposition of its oxide at the HR lesion is observed as lesion browning.  相似文献   

5.
6.
Rice produces low-molecular-weight antimicrobial compounds known as phytoalexins, in response to not only pathogen attack but also abiotic stresses including ultraviolet (UV) irradiation. Rice phytoalexins are composed of diterpenoids and a flavonoid. Recent studies have indicated that endogenous jasmonyl-l-isoleucine (JA-Ile) is not necessarily required for the production of diterpenoid phytoalexins in blast-infected or CuCl2-treated rice leaves. However, JA-Ile is required for the accumulation of the flavonoid phytoalexin, sakuranetin. Here, we investigated the roles of JA-Ile in UV-induced phytoalexin production. We showed that UV-irradiation induces the biosynthesis of JA-Ile and its precursor jasmonic acid. We also showed that rice jasmonate biosynthesis mutants produced diterpenoid phytoalexins but not sakuranetin in response to UV, indicating that JA-Ile is required for the production of sakuranetin but not diterpenoid phytoalexins in UV-irradiated rice leaves.  相似文献   

7.
8.
9.
Reduction of the level of arsenic (As) in rice grains is an important challenge for agriculture. A recent study reported that the OsABCC1 transporter prevents the accumulation of As in grains by sequestering As–phytochelatin complexes into vacuoles in the upper nodes. However, how phytochelatins are provided in response to As remains unclear. Here, we show that the phytochelatin synthase OsPCS1 plays a crucial role in reducing As levels in rice grains. Using a forward genetic approach, we isolated two rice mutants (has1 and has2) in which As levels were much higher in grains but significantly lower in node I compared with the wild type. Map‐based cloning identified the genes responsible as OsABCC1 in has1 and OsPCS1 in has2. The levels of As in grains and node I were similar between the two mutants, suggesting that OsABCC1 preferentially cooperates with OsPCS1 to sequester As, although rice has another phytochelatin synthase, OsPCS2. An in vitro phytochelatin synthesis assay indicated that OsPCS1 was more sensitive to activation by As than by cadmium, whereas OsPCS2 was more weakly activated by As than by cadmium. Transgenic plants highly expressing OsPCS1 showed significantly lower As levels in grains than did wild‐type plants. Our results provide new knowledge of the relative contribution of rice PCS paralogs to As sequestration and suggest a good candidate tool to reduce As levels in rice grains.  相似文献   

10.
11.
12.
13.
The two independent domestication events in the genus Oryza that led to African and Asian rice offer an extremely useful system for studying the genetic basis of parallel evolution. This system is also characterized by parallel de‐domestication events, with two genetically distinct weedy rice biotypes in the US derived from the Asian domesticate. One important trait that has been altered by rice domestication and de‐domestication is hull colour. The wild progenitors of the two cultivated rice species have predominantly black‐coloured hulls, as does one of the two U.S. weed biotypes; both cultivated species and one of the US weedy biotypes are characterized by straw‐coloured hulls. Using Black hull 4 (Bh4) as a hull colour candidate gene, we examined DNA sequence variation at this locus to study the parallel evolution of hull colour variation in the domesticated and weedy rice system. We find that independent Bh4‐coding mutations have arisen in African and Asian rice that are correlated with the straw hull phenotype, suggesting that the same gene is responsible for parallel trait evolution. For the U.S. weeds, Bh4 haplotype sequences support current hypotheses on the phylogenetic relationship between the two biotypes and domesticated Asian rice; straw hull weeds are most similar to indica crops, and black hull weeds are most similar to aus crops. Tests for selection indicate that Asian crops and straw hull weeds deviate from neutrality at this gene, suggesting possible selection on Bh4 during both rice domestication and de‐domestication.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号