首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Jasmonate (JA) signaling is essential for several environmental responses and reproductive development in many plant species. In Arabidopsis thaliana, the most obvious phenotype of JA biosynthetic and perception mutants is profound sporophytic male sterility characterized by failure of stamen filament elongation, severe delay of anther dehiscence and pollen inviability. The site of action of JA in the context of reproductive development has been discussed, but the ideas have not been tested experimentally. To this end we used targeted expression of a COI1‐YFP transgene in the coi1‐1 mutant background. As COI1 is an essential component of the JA co‐receptor complex, the null coi1‐1 mutant is male sterile due to lack of JA perception. We show that expression of COI1‐YFP in the epidermis of the stamen filament and anther in coi1 mutant plants is sufficient to rescue filament elongation, anther dehiscence and pollen viability. In contrast, filament expression alone or expression in the tapetum do not restore dehiscence and pollen viability. These results demonstrate that epidermal JA perception is sufficient for anther function and pollen viability, and suggest the presence of a JA‐dependent non‐autonomous signal produced in the anther epidermis to synchronize both anther dehiscence and pollen maturation.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
Chen  Mo  Zhang  Wei  Yan  Mi  He  Simei  Lu  Yingchun  Zhang  Guanghui  Hao  Bing  Fan  Wei  Hu  Yanru  Yang  Shengchao 《Plant Molecular Biology Reporter》2022,40(3):530-538

The jasmonate ZIM-domain (JAZ) proteins are repressors that function in the regulation of plant growth, development, and response to stimulation of different signals in the JA signaling pathway. Erigeron breviscapus is characteristic of sporophyte self-incompatibility (SSI). However, whether JA signaling is involved in regulation of development processes in E. breviscapus is unclear. In this study, the JAZ homolog EbJAZ1 was isolated and characterized from E. breviscapus. EbJAZ1 was localized to the nucleus, and expressed in roots, stems, leaves and flowers. Ectopic expression of EbJAZ1 in Arabidopsis resulted in shorter filament and silique length, and lower seed fertility. In addition, MeJA-induced root growth inhibition was compromised in transgenic plants. Further qRT-PCR analysis indicated that expression patterns of marker genes for VSP1, VSP2, JAZ1, JAZ5, JAZ8, JAZ10, MYC2, and bHLH17 were downregulated in transgenic plants compared to wild-type, suggesting that EbJAZ regulates the development of flower organs, seed fertility, and primary root growth through the JA signaling pathway. Thus, our results indicate that EbJAZ1 is one of the important regulators possibly involved in SSI and other developmental processes in Erigeron breviscapus.

  相似文献   

12.
13.
14.
15.
Precise coordination between stamen and pistil development is essential to make a fertile flower. Mutations impairing stamen filament elongation, pollen maturation, or anther dehiscence will cause male sterility. Deficiency in plant hormone gibberellin (GA) causes male sterility due to accumulation of DELLA proteins, and GA triggers DELLA degradation to promote stamen development. Deficiency in plant hormone jasmonate (JA) also causes male sterility. However, little is known about the relationship between GA and JA in controlling stamen development. Here, we show that MYB21, MYB24, and MYB57 are GA-dependent stamen-enriched genes. Loss-of-function of two DELLAs RGA and RGL2 restores the expression of these three MYB genes together with restoration of stamen filament growth in GA-deficient plants. Genetic analysis showed that the myb21-t1 myb24-t1 myb57-t1 triple mutant confers a short stamen phenotype leading to male sterility. Further genetic and molecular studies demonstrate that GA suppresses DELLAs to mobilize the expression of the key JA biosynthesis gene DAD1, and this is consistent with the observation that the JA content in the young flower buds of the GA-deficient quadruple mutant ga1-3 gai-t6 rga-t2 rgl1-1 is much lower than that in the WT. We conclude that GA promotes JA biosynthesis to control the expression of MYB21, MYB24, and MYB57. Therefore, we have established a hierarchical relationship between GA and JA in that modulation of JA pathway by GA is one of the prerequisites for GA to regulate the normal stamen development in Arabidopsis.  相似文献   

16.
17.
18.
Mechanical wounding or treatment with exogenous jasmonates (JA) induces differentiation of the laticifer in Hevea brasiliensis. JA is a key signal for latex biosynthesis and wounding response in the rubber tree. Identification of JAZ (jasmonate ZIM‐domain) family of proteins that repress JA responses has facilitated rapid progress in understanding how this lipid‐derived hormone controls gene expression and related physiological processes in plants. In this work, the full‐length cDNAs of six JAZ genes were cloned from H. brasiliensis (termed HbJAZ). These HbJAZ have different lengths and sequence diversity, but all of them contain Jas and ZIM domains, and two of them contain an ERF‐associated amphiphilic repression (EAR) motif in the N‐terminal. Real‐time RT‐PCR analyses revealed that HbJAZ have different expression patterns and tissue specificity. Four HbJAZ were up‐regulated, one was down‐regulated, while two were less effected by rubber tapping treatment, suggesting that they might play distinct roles in the wounding response. A yeast two‐hybrid assay revealed that HbJAZ proteins interact with each other to form homologous or heterogeneous dimer complexes, indicating that the HbJAZ proteins may expand their function through diverse JAZ–JAZ interactions. This work lays a foundation for identification of the JA signalling pathway and molecular mechanisms of latex biosynthesis in rubber trees.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号