首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The roles of auxin in the regulation of symbiotic legume nodule formation are unclear. We recently showed that enhanced sensitivity to auxin resulting from overexpression of miR160 inhibits determinate nodule formation in soybean. We examined the roles of miR393 and miR164 in soybean (that forms determinate nodules) and Medicago truncatula (that forms indeterminate nodules). Our results together with previous studies suggest that indeterminate nodule formation requires a higher, but narrow window of auxin sensitivity and that miR164 regulation is not crucial for determinate nodule formation.  相似文献   

2.
Plant microRNAs play vital roles in auxin signaling via the negative regulation of auxin response factors (ARFs). Studies have shown that targeting of ARF10/16/17 by miR160 is indispensable for various aspects of development, but its functions in the model crop tomato (Solanum lycopersicum) are unknown. Here we knocked down miR160 (sly–miR160) using a short tandem target mimic (STTM160), and investigated its roles in tomato development. Northern blot analysis showed that miR160 is abundant in developing ovaries. In line with this, its down‐regulation perturbed ovary patterning as indicated by the excessive elongation of the proximal ends of mutant ovaries and thinning of the placenta. Following fertilization, these morphological changes led to formation of elongated, pear‐shaped fruits reminiscent of those of the tomato ovate mutant. In addition, STTM160‐expressing plants displayed abnormal floral organ abscission, and produced leaves, sepals and petals with diminished blades, indicating a requirement for sly–miR160 for these auxin‐mediated processes. We found that sly–miR160 depletion was always associated with the up‐regulation of SlARF10A, SlARF10B and SlARF17, of which the expression of SlARF10A increased the most. Despite the sly–miR160 legitimate site of SlARF16A, its mRNA levels did not change in response to sly–miR160 down‐regulation, suggesting that it may be regulated by a mechanism other than mRNA cleavage. SlARF10A and SlARF17 were previously suggested to function as inhibiting ARFs. We propose that by adjusting the expression of a group of ARF repressors, of which SlARF10A is a primary target, sly–miR160 regulates auxin‐mediated ovary patterning as well as floral organ abscission and lateral organ lamina outgrowth.  相似文献   

3.
To overcome nitrogen deficiency, legume roots establish symbiotic interactions with nitrogen-fixing rhizobia that are fostered in specialized organs (nodules). Similar to other organs, nodule formation is determined by a local maximum of the phytohormone auxin at the primordium site. However, how auxin regulates nodule development remains poorly understood. Here, we found that in soybean, (Glycine max), dynamic auxin transport driven by PIN-FORMED (PIN) transporter GmPIN1 is involved in nodule primordium formation. GmPIN1 was specifically expressed in nodule primordium cells and GmPIN1 was polarly localized in these cells. Two nodulation regulators, (iso)flavonoids trigger expanded distribution of GmPIN1b to root cortical cells, and cytokinin rearranges GmPIN1b polarity. Gmpin1abc triple mutants generated with CRISPR-Cas9 showed the impaired establishment of auxin maxima in nodule meristems and aberrant divisions in the nodule primordium cells. Moreover, overexpression of GmPIN1 suppressed nodule primordium initiation. GmPIN9d, an ortholog of Arabidopsis thaliana PIN2, acts together with GmPIN1 later in nodule development to acropetally transport auxin in vascular bundles, fine-tuning the auxin supply for nodule enlargement. Our findings reveal how PIN-dependent auxin transport modulates different aspects of soybean nodule development and suggest that the establishment of auxin gradient is a prerequisite for the proper interaction between legumes and rhizobia.

In soybean, nodule primordium formation involves GmPIN1-mediated polar auxin transport within primordium cells, and nodule enlargement involves the collaboration of GmPIN9d and GmPIN1-dependent auxin transport within nodule vasculature.  相似文献   

4.
5.
6.
Wang JW  Wang LJ  Mao YB  Cai WJ  Xue HW  Chen XY 《The Plant cell》2005,17(8):2204-2216
The plant root cap mediates the direction of root tip growth and protects internal cells. Root cap cells are continuously produced from distal stem cells, and the phytohormone auxin provides position information for root distal organization. Here, we identify the Arabidopsis thaliana auxin response factors ARF10 and ARF16, targeted by microRNA160 (miR160), as the controller of root cap cell formation. The Pro(35S):MIR160 plants, in which the expression of ARF10 and ARF16 is repressed, and the arf10-2 arf16-2 double mutants display the same root tip defect, with uncontrolled cell division and blocked cell differentiation in the root distal region and show a tumor-like root apex and loss of gravity-sensing. ARF10 and ARF16 play a role in restricting stem cell niche and promoting columella cell differentiation; although functionally redundant, the two ARFs are indispensable for root cap development, and the auxin signal cannot bypass them to initiate columella cell production. In root, auxin and miR160 regulate the expression of ARF10 and ARF16 genes independently, generating a pattern consistent with root cap development. We further demonstrate that miR160-uncoupled production of ARF16 exerts pleiotropic effects on plant phenotypes, and miR160 plays an essential role in regulating Arabidopsis development and growth.  相似文献   

7.
8.
9.
Initiation of symbiotic nodules in legumes requires cytokinin signaling, but its mechanism of action is largely unknown. Here, we tested whether the failure to initiate nodules in the Medicago truncatula cytokinin perception mutant cre1 (cytokinin response1) is due to its altered ability to regulate auxin transport, auxin accumulation, and induction of flavonoids. We found that in the cre1 mutant, symbiotic rhizobia cannot locally alter acro- and basipetal auxin transport during nodule initiation and that these mutants show reduced auxin (indole-3-acetic acid) accumulation and auxin responses compared with the wild type. Quantification of flavonoids, which can act as endogenous auxin transport inhibitors, showed a deficiency in the induction of free naringenin, isoliquiritigenin, quercetin, and hesperetin in cre1 roots compared with wild-type roots 24 h after inoculation with rhizobia. Coinoculation of roots with rhizobia and the flavonoids naringenin, isoliquiritigenin, and kaempferol, or with the synthetic auxin transport inhibitor 2,3,5,-triiodobenzoic acid, rescued nodulation efficiency in cre1 mutants and allowed auxin transport control in response to rhizobia. Our results suggest that CRE1-dependent cytokinin signaling leads to nodule initiation through the regulation of flavonoid accumulation required for local alteration of polar auxin transport and subsequent auxin accumulation in cortical cells during the early stages of nodulation.  相似文献   

10.
11.
12.
13.
Despite their relatively simple appearance, roots are incredibly complex organs that are highly adapted to differing environments. Many aspects of root development are co-ordinated by subtle spatial differences in the concentrations of the phytohormones auxin and cytokinin. Events from the formation of a root during embryogenesis to the determination of the network of lateral roots are controlled by interactions between these hormones. Recently, interactions have been defined where auxin signaling promotes the expression of cytokinin signaling inhibitors, cytokinin signaling promotes the expression of auxin signaling inhibitors and finally where cytokinin signaling regulates the complex network of auxin transport proteins to position zones of high auxin signaling. We are witnessing a period of discovery in which we are beginning to understand how these hormonal pathways communicate to regulate root formation.  相似文献   

14.
缺磷条件下白羽扇豆排根发育与生长素及miR164的关系   总被引:1,自引:1,他引:0  
以缺磷条件下白羽扇豆为材料,观察了外源生长素NAA和生长素运输的抑制剂NPA 对白羽扇豆排根形成及其活性的影响,同时运用基因芯片与RT-PCR的方法分析了生长素信号转导途径中转录因子NAC1以及调控NAC1表达的上游microRNA164(miR164)在不同发育阶段排根中的表达变化,以探讨白羽扇豆在缺磷时排根形成与发育的调控机制.结果表明,缺磷胁迫下排根大量形成与生长素及其运输有关,排根NAC1的表达在初生阶段上调,成熟后下调,并受其上游的miR164的负调控,而排根衰老后则上述基因的表达都减弱.研究发现,在缺磷诱导的排根发生至发育成熟过程中,miR164、NAC1、生长素与排根发育之间很可能组成了一个级联系统,从而控制排根的发生与发育.  相似文献   

15.
Samira R. Mansour 《Protoplasma》1994,183(1-4):126-130
Summary Measurements of auxin and cytokinin activities in extracts ofCasuarina root nodules were made. The nodules were induced either by pure culture ofFrankia strain CgI4 or by crushed nodule inoculum. Levels of cytokinin activity were significantly higher in root nodules induced by pureFrankia culture than in those induced by crushed nodule inoculum. However, the reasons for this are unknown. Seasonal variation in levels of cytokinin activity inCasuarina nodules has also been detected.Dedicated to the memory of Professor John G. Torrey  相似文献   

16.
The genus Phytophthora consists of many notorious pathogens of crops and forestry trees. At present, battling Phytophthora diseases is challenging due to a lack of understanding of their pathogenesis. We investigated the role of small RNAs in regulating soybean defense in response to infection by Phytophthora sojae, the second most destructive pathogen of soybean. Small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are universal regulators that repress target gene expression in eukaryotes. We identified known and novel small RNAs that differentially accumulated during P. sojae infection in soybean roots. Among them, miR393 and miR166 were induced by heat‐inactivated P. sojae hyphae, indicating that they may be involved in soybean basal defense. Indeed, knocking down the level of mature miR393 led to enhanced susceptibility of soybean to P. sojae; furthermore, the expression of isoflavonoid biosynthetic genes was drastically reduced in miR393 knockdown roots. These data suggest that miR393 promotes soybean defense against P. sojae. In addition to miRNAs, P. sojae infection also resulted in increased accumulation of phased siRNAs (phasiRNAs) that are predominantly generated from canonical resistance genes encoding nucleotide binding‐leucine rich repeat proteins and genes encoding pentatricopeptide repeat‐containing proteins. This work identifies specific miRNAs and phasiRNAs that regulate defense‐associated genes in soybean during Phytophthora infection.  相似文献   

17.
Plants adapt to different environmental conditions by constantly forming new organs in response to morphogenetic signals. Lateral roots branch from the main root in response to local auxin maxima. How a local auxin maximum translates into a robust pattern of gene activation ensuring the proper growth of the newly formed lateral root is largely unknown. Here, we demonstrate that miR390, TAS3-derived trans-acting short-interfering RNAs (tasiRNAs), and AUXIN RESPONSE FACTORS (ARFs) form an auxin-responsive regulatory network controlling lateral root growth. Spatial expression analysis using reporter gene fusions, tasi/miRNA sensors, and mutant analysis showed that miR390 is specifically expressed at the sites of lateral root initiation where it triggers the biogenesis of tasiRNAs. These tasiRNAs inhibit ARF2, ARF3, and ARF4, thus releasing repression of lateral root growth. In addition, ARF2, ARF3, and ARF4 affect auxin-induced miR390 accumulation. Positive and negative feedback regulation of miR390 by ARF2, ARF3, and ARF4 thus ensures the proper definition of the miR390 expression pattern. This regulatory network maintains ARF expression in a concentration range optimal for specifying the timing of lateral root growth, a function similar to its activity during leaf development. These results also show how small regulatory RNAs integrate with auxin signaling to quantitatively regulate organ growth during development.  相似文献   

18.
19.
The root nodules of both dormant and non-dormant plants of Alnusglutinosa (L.) Gaertn. were found (by the soybean callus bioassay)to contain levels of cytokinin activity greatly exceeding thoseof other parts of young vegetative plants. A large, transient increase in cytokinin activity occurred inthe nodules at the time of bud break. Similar, although muchsmaller, increases were detected also in roots and buds. Theincrease in the level of nodule cytokinin activity was observedboth in mature trees and in young pot-grown plants in two successiveyears. A second peak of cytokinin activity, considered to bederived from cytokinin nucleotides, was found in the nodulesof mature trees in midsummer. Analysis of cytokinin extracts of different plant parts by meansof a Sephadex LH20 column revealed the presence of three mainpeaks of activity, with elution volumes corresponding to thoseof zeatin-9-glucoside, zeatin riboside, and zeatin. While theglucoside-like peak -was predominant in the nodules and leavesit was not detected in root pressure sap. A zeatin ribo-side-likepeak was the major cytokinin in the roots and root pressuresap. These findings are discussed in relation to current hypothesesconcerning the production, distribution, and possible physiologicalroles of the cytokinins.  相似文献   

20.
flg22 treatment increases levels of miR393, a microRNA that targets auxin receptors. Over-expression of miR393 renders plants more resistant to biotroph pathogens and more susceptible to necrotroph pathogens. In contrast, over-expression of AFB1, an auxin receptor whose mRNA is partially resistant to miR393 degradation, renders the plant more susceptible to biotroph pathogens. Here we investigate the mechanism by which auxin signalling and miR393 influence plant defence. We show that auxin signalling represses SA levels and signalling. We also show that miR393 represses auxin signalling, preventing it from antagonizing SA signalling. In addition, over-expression of miR393 increases glucosinolate levels and decreases the levels of camalexin. Further studies on pathogen interactions in auxin signalling mutants revealed that ARF1 and ARF9 negatively regulate glucosinolate accumulation, and that ARF9 positively regulates camalexin accumulation. We propose that the action of miR393 on auxin signalling triggers two complementary responses. First, it prevents suppression of SA levels by auxin. Second, it stabilizes ARF1 and ARF9 in inactive complexes. As a result, the plant is able to mount a full SA response and to re-direct metabolic flow toward the most effective anti-microbial compounds for biotroph resistance. We propose that miR393 levels can fine-tune plant defences and prioritize resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号