首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Arabidopsis thaliana somatic embryogenesis receptor‐like kinase (SERK) family consists of five leucine‐rich repeat receptor‐like kinases (LRR‐RLKs) with diverse functions such as brassinosteroid insensitive 1 (BRI1)‐mediated brassinosteroid perception, development and innate immunity. The autophosphorylation activity of the kinase domains of the five SERK proteins was compared and the phosphorylated residues were identified by LC‐MS/MS. Differences in autophosphorylation that ranged from high activity of SERK1, intermediate activities for SERK2 and SERK3 to low activity for SERK5 were noted. In the SERK1 kinase the C‐terminally located residue Ser‐562 controls full autophosphorylation activity. Activation loop phosphorylation, including that of residue Thr‐462 previously shown to be required for SERK1 kinase activity, was not affected. In vivo SERK1 phosphorylation was induced by brassinosteroids. Immunoprecipitation of CFP‐tagged SERK1 from plant extracts followed by MS/MS identified Ser‐303, Thr‐337, Thr‐459, Thr‐462, Thr‐463, Thr‐468, and Ser‐612 or Thr‐613 or Tyr‐614 as in vivo phosphorylation sites of SERK1. Transphosphorylation of SERK1 by the kinase domain of the main brassinosteroid receptor BRI1 occurred only on Ser‐299 and Thr‐462. This suggests both intra‐ and intermolecular control of SERK1 kinase activity. Conversely, BRI1 was transphosphorylated by the kinase domain of SERK1 on Ser‐887. BRI1 kinase activity was not required for interaction with the SERK1 receptor in a pull down assay.  相似文献   

2.
As molecular on–off switches, heterotrimeric G protein complexes, comprised of a Gα subunit and an obligate Gβγ dimer, transmit extracellular signals received by G protein–coupled receptors (GPCRs) to cytoplasmic targets that respond to biotic and abiotic stimuli. Signal transduction is modulated by phosphorylation of GPCRs and G protein complexes. In Arabidopsis thaliana, the Gα subunit AtGPA1 is phosphorylated by the receptor‐like kinase (RLK) BRI1‐associated Kinase 1 (BAK1), but the extent that other RLKs phosphorylates AtGPA1 is unknown. Twenty‐two trans‐phosphorylation sites on AtGPA1 are mapped by 12 RLKs hypothesized to act in the Arabidopsis G protein signaling pathway. Cis‐phosphorylation sites are also identified on these RLKs, some newly shown to be dual specific kinases. Multiple sites are present in the core AtGPA1 functional units, including pSer52 and/or pThr53 of the conserved P‐loop that directly binds nucleotide/phosphate, pThr164, and pSer175 from αE helix in the intramolecular domain interface for nucleotide exchange and GTP hydrolysis, and pThr193 and/or pThr194 in Switch I (SwI) that coordinates nucleotide exchange and protein partner binding. Several AtGPA1 S/T phosphorylation sites are potentially nucleotide‐dependent phosphorylation patterns, such as Ser52/Thr53 in the P‐loop and Thr193 and/or Thr194 in SwI.  相似文献   

3.
4.
We have identified the tomato I gene for resistance to the Fusarium wilt fungus Fusarium oxysporum f. sp. lycopersici (Fol) and show that it encodes a membrane‐anchored leucine‐rich repeat receptor‐like protein (LRR‐RLP). Unlike most other LRR‐RLP genes involved in plant defence, the I gene is not a member of a gene cluster and contains introns in its coding sequence. The I gene encodes a loopout domain larger than those in most other LRR‐RLPs, with a distinct composition rich in serine and threonine residues. The I protein also lacks a basic cytosolic domain. Instead, this domain is rich in aromatic residues that could form a second transmembrane domain. The I protein recognises the Fol Avr1 effector protein, but, unlike many other LRR‐RLPs, recognition specificity is determined in the C‐terminal half of the protein by polymorphic amino acid residues in the LRRs just preceding the loopout domain and in the loopout domain itself. Despite these differences, we show that I/Avr1‐dependent necrosis in Nicotiana benthamiana depends on the LRR receptor‐like kinases (RLKs) SERK3/BAK1 and SOBIR1. Sequence comparisons revealed that the I protein and other LRR‐RLPs involved in plant defence all carry residues in their last LRR and C‐terminal LRR capping domain that are conserved with SERK3/BAK1‐interacting residues in the same relative positions in the LRR‐RLKs BRI1 and PSKR1. Tyrosine mutations of two of these conserved residues, Q922 and T925, abolished I/Avr1‐dependent necrosis in N. benthamiana, consistent with similar mutations in BRI1 and PSKR1 preventing their interaction with SERK3/BAK1.  相似文献   

5.
Leucine-rich repeat (LRR) receptor-like kinases (RLKs), evolutionarily related LRR receptor-like proteins (RLPs) and receptor-like cytoplasmic kinases (RLCKs) have important roles in plant signaling, and their gene subfamilies are large with a complicated history of gene duplication and loss. In three pairs of closely related lineages, including Arabidopsis thaliana and A. lyrata (Arabidopsis), Lotus japonicus, and Medicago truncatula (Legumes), Oryza sativa ssp. japonica, and O. sativa ssp. indica (Rice), we find that LRR RLKs comprise the largest group of these LRR-related subfamilies, while the related RLCKs represent the smal est group. In addition, comparison of orthologs indicates a high frequency of reciprocal gene loss of the LRR RLK/LRR RLP/RLCK subfamilies. Furthermore, pairwise comparisons show that reciprocal gene loss is often associated with lineage-specific duplication(s) in the alternative lineage. Last, analysis of genes in A. thaliana involved in development revealed that most are highly conserved orthologs without species-specific duplication in the two Arabidopsis species and originated from older Arabidopsis-specific or rosid-specific duplications. We discuss potential pitfal s related to functional prediction for genes that have undergone frequent turnover (duplications, losses, and domain architecture changes), and conclude that prediction based on phylogenetic relationships wil likely outperform that based on sequence similarity alone.  相似文献   

6.
Leucine-rich repeat receptor-like kinases (LRR RLKs) comprise the largest group within the plant receptor-like kinase (RLK) superfamily, and the Arabidopsis genome alone contains over 200 LRR RLK genes. Although there is clear evidence for diverse roles played by individual LRR RLK genes in Arabidopsis growth and development, the evolutionary mechanism for this functional diversification is currently unclear. In this study, we focused on the LRRII RLK subfamily to investigate the molecular mechanisms that might have led to the functional differentiation of Arabidopsis LRR RLK genes. Phylogenetic analysis of 14 genes in this subfamily revealed three well-supported groups (I, II, and III). RT-PCR analysis did not find many qualitative differences in expression among these 14 genes in various Arabidopsis tissues, suggesting that evolution of regulatory sequences did not play a major role in their functional divergence. We analyzed substitution patterns in the predicted ligand-binding regions of these genes to examine if positive selection has acted to produce novel ligand-binding specificities, using the nonsynonymous/synonymous rate ratio (d N/d S) as an indicator of selective pressure. Estimates of d N/d S ratios from multiple methods indicate that nonsynonymous substitutions accumulated during divergence of the three lineages. Positive selection is likely to have occurred along the lineages ancestral to groups II and III. We suggest that positive selection on the ligand-binding sites of LRRII RLKs promoted diversification of ligand-binding specificities and thus contributed to the functional differentiation of Arabidopsis LRRII RLK genes during evolution. [Reviewing Editor: Dr. Martin Kreitman]  相似文献   

7.
The medicinal plant Camptotheca acuminata accumulates camptothecin, 10‐hydroxycamptothecin, and 10‐methoxycamptothecin as its major bioactive monoterpene indole alkaloids. Here, we describe identification and functional characterization of 10‐hydroxycamptothecin O‐methyltransferase (Ca10OMT), a member of the Diverse subclade of class II OMTs. Ca10OMT is highly active toward both its alkaloid substrate and a wide range of flavonoids in vitro and in this way contrasts with other alkaloid OMTs in the subclade that only utilize alkaloid substrates. Ca10OMT shows a strong preference for the A‐ring 7‐OH of flavonoids, which is structurally equivalent to the 10‐OH of 10‐hydroxycamptothecin. The substrates of other alkaloid OMTs in the subclade bear little similarity to flavonoids, but the 3‐D positioning of the 7‐OH, A‐ and C‐rings of flavonoids is nearly identical to the 10‐OH, A‐ and B‐rings of 10‐hydroxycamptothecin. This structural similarity likely explains the retention of flavonoid OMT activity by Ca10OMT and also why kaempferol and quercetin aglycones are potent inhibitors of its 10‐hydroxycamptothecin activity. The catalytic promiscuity and strong inhibition of Ca10OMT by flavonoid aglycones in vitro prompted us to investigate the potential physiological roles of the enzyme in vivo. Based on its regioselectivity, kinetic parameters and absence of 7‐OMT flavonoids in vivo, we conclude that the major and likely only substrate of Ca10OMTin vivo is 10‐hydroxycamptothecin. This is likely accomplished by Ca10OMT being kept spatially separated at the tissue levels from potentially inhibitory flavonoid aglycones, and flavonoid aglycones being rapidly glycosylated to non‐inhibitory flavonoid glycosides.  相似文献   

8.
Signal transduction mediated by Ser/Thr phosphorylation in Mycobacterium tuberculosis has been intensively studied in the last years, as its genome harbors eleven genes coding for eukaryotic‐like Ser/Thr kinases. Here we describe the crystal structure and the autophosphorylation sites of the catalytic domain of PknA, one of two protein kinases essential for pathogen's survival. The structure of the ligand‐free kinase domain shows an auto‐inhibited conformation similar to that observed in human Tyr kinases of the Src‐family. These results reinforce the high conservation of structural hallmarks and regulation mechanisms between prokaryotic and eukaryotic protein kinases. Proteins 2015; 83:982–988. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
The present study was designed to investigate whether destabilization of maturation promoting factor (MPF) leads to postovulatory aging‐mediated abortive spontaneous egg activation (SEA). If so, we wished to determine whether changes in Wee‐1 as well as Emi2 levels are associated with MPF destabilization during postovulatory aging‐mediated abortive SEA in rats eggs aged in vivo. For this purpose, sexually immature female rats were given a single injection (20 IU IM) of pregnant mare serum gonadotropin for 48 h followed by single injection of human chorionic gonadotropin (20 IU). Ovulated eggs were collected after 14, 17, 19 and 21 h post‐hCG surge to induce postovulatory aging in vivo. The morphological changes, Wee1, phosphorylation status of cyclin dependent kinase 1(Cdk1), early mitotic inhibitor 2 (Emi2), anaphase promoting complex/cyclosome (APC/C), cyclin B1, mitotic arrest deficient protein (MAD2) levels and Cdk1 activity were analyzed. The increased Wee 1 level triggered phosphorylation of Thr‐14/Tyr‐15 and dephosphorylation of Thr‐161 residues of Cdk1. The decrease of Emi2 level was associated with increased APC/C level and decreased cyclin B1 level. Changes in phosphorylation status of Cdk1 and reduced cyclin B1 level resulted in destabilization of MPF. The destabilized MPF finally led to postovulatory aging‐mediated abortive SEA in rat eggs. It was concluded that the increase of Wee 1 but decrease of Emi2 level triggers MPF destabilization and thereby postovulatory aging‐mediated abortive SEA in rat eggs.  相似文献   

10.
Plants maintain pools of pluripotent stem cells which allow them to constantly produce new tissues and organs. Stem cell homeostasis in shoot and root tips depends on negative regulation by ligand–receptor pairs of the CLE peptide and leucine‐rich repeat receptor‐like kinase (LRR‐RLK) families. However, regulation of the cambium, the stem cell niche required for lateral growth of shoots and roots, is poorly characterized. Here we show that the LRR‐RLK MOL1 is necessary for cambium homeostasis in Arabidopsis thaliana. By employing promoter reporter lines, we reveal that MOL1 is active in a domain that is distinct from the domain of the positively acting CLE41/PXY signaling module. In particular, we show that MOL1 acts in an opposing manner to the CLE41/PXY module and that changing the domain or level of MOL1 expression both result in disturbed cambium organization. Underlining discrete roles of MOL1 and PXY, both LRR‐RLKs are not able to replace each other when their expression domains are interchanged. Furthermore, MOL1 but not PXY is able to rescue CLV1 deficiency in the shoot apical meristem. By identifying genes mis‐expressed in mol1 mutants, we demonstrate that MOL1 represses genes associated with stress‐related ethylene and jasmonic acid hormone signaling pathways which have known roles in coordinating lateral growth of the Arabidopsis stem. Our findings provide evidence that common regulatory mechanisms in different plant stem cell niches are adapted to specific niche anatomies and emphasize the importance of a complex spatial organization of intercellular signaling cascades for a strictly bidirectional tissue production.  相似文献   

11.
Perception of microbe‐associated molecular patterns by host cell surface pattern recognition receptors (PRRs) triggers the intracellular activation of mitogen‐activated protein kinase (MAPK) cascades. However, it is not known how PRRs transmit immune signals to MAPK cascades in plants. Here, we identify a complete phospho‐signaling transduction pathway from PRR‐mediated pathogen recognition to MAPK activation in plants. We found that the receptor‐like cytoplasmic kinase PBL27 connects the chitin receptor complex CERK1‐LYK5 and a MAPK cascade. PBL27 interacts with both CERK1 and the MAPK kinase kinase MAPKKK5 at the plasma membrane. Knockout mutants of MAPKKK5 compromise chitin‐induced MAPK activation and disease resistance to Alternaria brassicicola. PBL27 phosphorylates MAPKKK5 in vitro, which is enhanced by phosphorylation of PBL27 by CERK1. The chitin perception induces disassociation between PBL27 and MAPKKK5 in vivo. Furthermore, genetic evidence suggests that phosphorylation of MAPKKK5 by PBL27 is essential for chitin‐induced MAPK activation in plants. These data indicate that PBL27 is the MAPKKK kinase that provides the missing link between the cell surface chitin receptor and the intracellular MAPK cascade in plants.  相似文献   

12.
Receptor-like protein kinases (RLKs) are the largest family of plant transmembrane signaling proteins. Here we present functional analysis of HAESA, an RLK that regulates floral organ abscission in Arabidopsis. Through in vitro and in vivo analysis of HAE phosphorylation, we provide evidence that a conserved phosphorylation site on a region of the HAE protein kinase domain known as the activation segment positively regulates HAE activity. Additional analysis has identified another putative activation segment phosphorylation site common to multiple RLKs that potentially modulates HAE activity. Comparative analysis suggests that phosphorylation of this second activation segment residue is an RLK specific adaptation that may regulate protein kinase activity and substrate specificity. A growing number of RLKs have been shown to exhibit biologically relevant dual specificity toward serine/threonine and tyrosine residues, but the mechanisms underlying dual specificity of RLKs are not well understood. We show that a phospho-mimetic mutant of both HAE activation segment residues exhibits enhanced tyrosine auto-phosphorylation in vitro, indicating phosphorylation of this residue may contribute to dual specificity of HAE. These results add to an emerging framework for understanding the mechanisms and evolution of regulation of RLK activity and substrate specificity.  相似文献   

13.
Receptor‐like proteins (RLPs), forming an important group of transmembrane receptors in plants, play roles in development and immunity. RLPs contain extracellular leucine‐rich repeats (LRRs) and, in contrast with receptor‐like kinases (RLKs), lack a cytoplasmic kinase required for the initiation of downstream signalling. Recent studies have revealed that the RLK SOBIR1/EVR (SUPPRESSOR OF BIR1‐1/EVERSHED) specifically interacts with RLPs. SOBIR1 stabilizes RLPs and is required for their function. However, the mechanism by which SOBIR1 associates with RLPs and regulates RLP function remains unknown. The Cf immune receptors of tomato (Solanum lycopersicum), mediating resistance to the fungus Cladosporium fulvum, are RLPs that also interact with SOBIR1. Here, we show that both the LRR and kinase domain of SOBIR1 are dispensable for association with the RLP Cf‐4, whereas the highly conserved GxxxGxxxG motif present in the transmembrane domain of SOBIR1 is essential for its interaction with Cf‐4 and additional RLPs. Complementation assays in Nicotiana benthamiana, in which endogenous SOBIR1 levels were knocked down by virus‐induced gene silencing, showed that the LRR domain as well as the kinase activity of SOBIR1 are required for the Cf‐4/Avr4‐triggered hypersensitive response (HR). In contrast, the LRRs and kinase activity of SOBIR1 are not required for facilitation of Cf‐4 accumulation. Together, these results suggest that, in addition to being a stabilizing scaffold for RLPs, SOBIR1 is also required for the initiation of downstream signalling through its kinase domain.  相似文献   

14.
Mutations in the mitochondrial protein kinase PINK1 are associated with autosomal recessive Parkinson disease (PD). We and other groups have reported that PINK1 activates Parkin E3 ligase activity both directly via phosphorylation of Parkin serine 65 (Ser65)—which lies within its ubiquitin‐like domain (Ubl)—and indirectly through phosphorylation of ubiquitin at Ser65. How Ser65‐phosphorylated ubiquitin (ubiquitinPhospho‐Ser65) contributes to Parkin activation is currently unknown. Here, we demonstrate that ubiquitinPhospho‐Ser65 binding to Parkin dramatically increases the rate and stoichiometry of Parkin phosphorylation at Ser65 by PINK1 in vitro. Analysis of the Parkin structure, corroborated by site‐directed mutagenesis, shows that the conserved His302 and Lys151 residues play a critical role in binding of ubiquitinPhospho‐Ser65, thereby promoting Parkin Ser65 phosphorylation and activation of its E3 ligase activity in vitro. Mutation of His302 markedly inhibits Parkin Ser65 phosphorylation at the mitochondria, which is associated with a marked reduction in its E3 ligase activity following mitochondrial depolarisation. We show that the binding of ubiquitinPhospho‐Ser65 to Parkin disrupts the interaction between the Ubl domain and C‐terminal region, thereby increasing the accessibility of Parkin Ser65. Finally, purified Parkin maximally phosphorylated at Ser65 in vitro cannot be further activated by the addition of ubiquitinPhospho‐Ser65. Our results thus suggest that a major role of ubiquitinPhospho‐Ser65 is to promote PINK1‐mediated phosphorylation of Parkin at Ser65, leading to maximal activation of Parkin E3 ligase activity. His302 and Lys151 are likely to line a phospho‐Ser65‐binding pocket on the surface of Parkin that is critical for the ubiquitinPhospho‐Ser65 interaction. This study provides new mechanistic insights into Parkin activation by ubiquitinPhospho‐Ser65, which could aid in the development of Parkin activators that mimic the effect of ubiquitinPhospho‐Ser65.  相似文献   

15.
16.
17.
18.
Receptor‐like kinases (RLKs) represent the largest group of cell surface receptors in plants. The monophyletic leucine‐rich repeat (LRR)‐RLK subfamily II is considered to contain the somatic embryogenesis receptor kinases (SERKs) and NSP‐interacting kinases known to be involved in developmental processes and cellular immunity in plants. There are only a few published studies on the phylogenetics of LRR‐RLKII; unfortunately these suffer from poor taxon/gene sampling. Hence, it is not clear how many and what main clades this family contains, let alone what structure–function relationships exist. We used 1342 protein sequences annotated as ‘SERK’ and ‘SERK‐like’ plus related sequences in order to estimate phylogeny within the LRR‐RLKII clade, using the nematode protein kinase Pelle as an outgroup. We reconstruct five main clades (LRR‐RLKII 1–5), in each of which the main pattern of land plant relationships re‐occurs, confirming previous hypotheses that duplication events happened in this gene subfamily prior to divergence among land plant lineages. We show that domain structures and intron–exon boundaries within the five clades are well conserved in evolution. Furthermore, phylogenetic patterns based on the separate LRR and kinase parts of LRR‐RLKs are incongruent: whereas the LRR part supports a LRR‐RLKII 2/3 sister group relationship, the kinase part supports clades 1/2. We infer that the kinase part includes few ‘radical’ amino acid changes compared with the LRR part. Finally, our results confirm that amino acids involved in each LRR‐RLKII–receptor complex interaction are located at N‐capping residues, and that the short amino acid motifs of this interaction domain are highly conserved throughout evolution within the five LRR‐RLKII clades.  相似文献   

19.
UV RESISTANCE LOCUS8 (UVR8) is a photoreceptor for ultraviolet‐B (UV‐B) light that initiates photomorphogenic responses in plants. UV‐B photoreception causes rapid dissociation of dimeric UVR8 into monomers that interact with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) to initiate signal transduction. Experiments with purified UVR8 show that the dimer is maintained by salt‐bridge interactions between specific charged amino acids across the dimer interface. However, little is known about the importance of these charged amino acids in determining dimer/monomer status and UVR8 function in plants. Here we evaluate the use of different methods to examine dimer/monomer status of UVR8 and show that mutations of several salt‐bridge amino acids affect dimer/monomer status, interaction with COP1 and photoreceptor function of UVR8 in vivo. In particular, the salt‐bridges formed between arginine 286 and aspartates 96 and 107 are key to dimer formation. Mutation of arginine 286 to alanine impairs dimer formation, interaction with COP1 and function in vivo, whereas mutation to lysine gives a weakened dimer that is functional in vivo, indicating the importance of the positive charge of the arginine/lysine residue for dimer formation. Notably, a UVR8 mutant in which aspartates 96 and 107 are conservatively mutated to asparagine is strongly impaired in dimer formation but mediates UV‐B responses in vivo with a similar dose–response relationship to wild‐type. The UV‐B responsiveness of this mutant does not correlate with dimer formation and monomerisation, indicating that monomeric UVR8 has the potential for UV‐B photoreception, initiating signal transduction and responses in plants.  相似文献   

20.
Phosphorylation and O‐GlcNAcylation are two widespread post‐translational modifications (PTMs), often affecting the same eukaryotic target protein. Plum pox virus (PPV) is a member of the genus Potyvirus which infects a wide range of plant species. O‐GlcNAcylation of the capsid protein (CP) of PPV has been studied extensively, and some evidence of CP phosphorylation has also been reported. Here, we use proteomics analyses to demonstrate that PPV CP is phosphorylated in vivo at the N‐terminus and the beginning of the core region. In contrast with the ‘yin–yang’ mechanism that applies to some mammalian proteins, PPV CP phosphorylation affects residues different from those that are O‐GlcNAcylated (serines Ser‐25, Ser‐81, Ser‐101 and Ser‐118). Our findings show that PPV CP can be concurrently phosphorylated and O‐GlcNAcylated at nearby residues. However, an analysis using a differential proteomics strategy based on iTRAQ (isobaric tags for relative and absolute quantitation) showed a significant enhancement of phosphorylation at Ser‐25 in virions recovered from O‐GlcNAcylation‐deficient plants, suggesting that crosstalk between O‐GlcNAcylation and phosphorylation in PPV CP takes place. Although the preclusion of phosphorylation at the four identified phosphotarget sites only had a limited impact on viral infection, the mimicking of phosphorylation prevents PPV infection in Prunus persica and weakens infection in Nicotiana benthamiana and other herbaceous hosts, prompting the emergence of potentially compensatory second mutations. We postulate that the joint action of phosphorylation and O‐GlcNAcylation in the N‐proximal segment of CP allows a fine‐tuning of protein stability, providing the amount of CP required in each step of viral infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号