首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
N‐glycosylation is critical for recombinant glycoprotein production as it influences the heterogeneity of products and affects their biological function. In most eukaryotes, the oligosaccharyltransferase is the central‐protein complex facilitating the N‐glycosylation of proteins in the lumen of the endoplasmic reticulum (ER). Not all potential N‐glycosylation sites are recognized in vivo and the site occupancy can vary in different expression systems, resulting in underglycosylation of recombinant glycoproteins. To overcome this limitation in plants, we expressed LmSTT3D, a single‐subunit oligosaccharyltransferase from the protozoan Leishmania major transiently in Nicotiana benthamiana, a well‐established production platform for recombinant proteins. A fluorescent protein‐tagged LmSTT3D variant was predominately found in the ER and co‐located with plant oligosaccharyltransferase subunits. Co‐expression of LmSTT3D with immunoglobulins and other recombinant human glycoproteins resulted in a substantially increased N‐glycosylation site occupancy on all N‐glycosylation sites except those that were already more than 90% occupied. Our results show that the heterologous expression of LmSTT3D is a versatile tool to increase N‐glycosylation efficiency in plants.  相似文献   

3.
N‐linked glycosylation is an essential protein modification that helps protein folding, trafficking and translocation in eukaryotic systems. The initial process for N‐linked glycosylation shares a common pathway with assembly of a dolichol‐linked core oligosaccharide. Here we characterize a new Arabidopsis thaliana mutant lew3 (leaf wilting 3), which has a defect in an α‐1,2‐mannosyltransferase, a homolog of ALG11 in yeast, that transfers mannose to the dolichol‐linked core oligosaccharide in the last two steps on the cytosolic face of the ER in N‐glycan precursor synthesis. LEW3 is localized to the ER membrane and expressed throughout the plant. Mutation of LEW3 caused low‐level accumulation of Man3GlcNAc2 and Man4GlcNAc2 glycans, structures that are seldom detected in wild‐type plants. In addition, the lew3 mutant has low levels of normal high‐mannose‐type glycans, but increased levels of complex‐type glycans. The lew3 mutant showed abnormal developmental phenotypes, reduced fertility, impaired cellulose synthesis, abnormal primary cell walls, and xylem collapse due to disturbance of the secondary cell walls. lew3 mutants were more sensitive to osmotic stress and abscisic acid (ABA) treatment. Protein N‐glycosylation was reduced and the unfolded protein response was more activated by osmotic stress and ABA treatment in the lew3 mutant than in the wild‐type. These results demonstrate that protein N‐glycosylation plays crucial roles in plant development and the response to abiotic stresses.  相似文献   

4.
Dolichol phosphate (Dol‐P) serves as a carrier of complex polysaccharides during protein glycosylation. Dol‐P is synthesized by the phosphorylation of dolichol or the monodephosphorylation of dolichol pyrophosphate (Dol‐PP); however, the enzymes that catalyze these reactions remain unidentified in Arabidopsis thaliana. We performed a genome‐wide search for cytidylyltransferase motif‐containing proteins in Arabidopsis, and found that At3g45040 encodes a protein homologous with Sec59p, a dolichol kinase (DOK) in Saccharomyces cerevisiae. At3g45040, designated AtDOK1, complemented defects in the growth and N‐linked glycosylation of the S. cerevisiae sec59 mutant, suggesting that AtDOK1 encodes a functional DOK. To characterize the physiological roles of AtDOK1 in planta, we isolated two independent lines of T‐DNA‐tagged AtDOK1 mutants, dok11 and dok12. The heterozygous plants showed developmental defects in male and female gametophytes, including an aberrant pollen structure, low pollen viability, and short siliques. Additionally, the mutations had incomplete penetrance. These results suggest that AtDOK1 is a functional DOK required for reproductive processes in Arabidopsis.  相似文献   

5.
Protein translocation into the endoplasmic reticulum (ER) occurs either co‐ or post‐translationally through the Sec translocation system. The Arabidopsis Sec post‐translocon is composed of the protein‐conducting Sec61 complex, the chaperone‐docking protein AtTPR7, the J‐domain‐containing proteins AtERdj2A/B and the yet uncharacterized AtSec62. Yeast Sec62p is suggested to mainly function in post‐translational translocation, whereas mammalian Sec62 also interacts with ribosomes. In Arabidopsis, loss of AtSec62 leads to impaired growth and drastically reduced male fertility indicating the importance of AtSec62 in protein translocation and subsequent secretion in male gametophyte development. Moreover, AtSec62 seems to be divergent in function as compared with yeast Sec62p, since we were not able to complement the thermosensitive yeast mutant sec62‐ts. Interestingly, AtSec62 has an additional third transmembrane domain in contrast to its yeast and mammalian counterparts resulting in an altered topology with the C‐terminus facing the ER lumen instead of the cytosol. In addition, the AtSec62 C‐terminus has proven to be indispensable for AtSec62 function, since a construct lacking the C‐terminal region was not able to rescue the mutant phenotype in Arabidopsis. We thus propose that Sec62 acquired a unique topology and function in protein translocation into the ER in plants.  相似文献   

6.
Recent studies on E3 of endoplasmic reticulum (ER)‐associated degradation (ERAD) in plants have revealed homologs in yeast and animals. However, it remains unknown whether the plant ERAD system contains a plant‐specific E3 ligase. Here, we report that MfSTMIR, which encodes an ER‐membrane‐localized RING E3 ligase that is highly conserved in leguminous plants, plays essential roles in the response of ER and salt stress in Medicago. MfSTMIR expression was induced by salt and tunicamycin (Tm). mtstmir loss‐of‐function mutants displayed impaired induction of the ER stress‐responsive genes BiP1/2 and BiP3 under Tm treatment and sensitivity to salt stress. MfSTMIR promoted the degradation of a known ERAD substrate, CPY*. MfSTMIR interacted with the ERAD‐associated ubiquitin‐conjugating enzyme MtUBC32 and Sec61‐translocon subunit MtSec61γ. MfSTMIR did not affect MtSec61γ protein stability. Our results suggest that the plant‐specific E3 ligase MfSTMIR participates in the ERAD pathway by interacting with MtUBC32 and MtSec61γ to relieve ER stress during salt stress.  相似文献   

7.
Proteins detrimental to endoplasmic reticulum (ER) morphology need to be efficiently exported. Here, we identify two mechanisms that control trafficking of Arabidopsis thalianaGLL23, a 43 kDa GDSL‐like lipase implicated in glucosinolate metabolism through its association with the β‐glucosidase myrosinase. Using immunofluorescence, we identified two mutants that showed aberrant accumulation of GLL23: large perinuclear ER aggregates in the nuclear cage (nuc) mutant; and small compartments contiguous with the peripheral ER in the cytoplasmic bodies (cyb) mutant. Live imaging of fluorescently tagged GLL23 confirmed its presence in the nuc and cyb compartments, but lack of fluorescent signals in the wild‐type plants suggested that GLL23 is normally post‐translationally modified for ER export. NUC encodes the MVP1/GOLD36/ERMO3 myrosinase‐associated protein, previously shown to have vacuolar distribution. CYB is an ER and Golgi‐localized p24 type I membrane protein component of coat protein complex (COP) vesicles, animal and yeast homologues of which are known to be involved in selective cargo sorting for ER–Golgi export. Without NUC, GLL23 accumulates in the ER this situation suggests that NUC is in fact active in the ER. Without CYB, both GLL23 and NUC were found to accumulate in cyb compartments, consistent with a role for NUC in GLL23 processing and indicated that GLL23 is the likely sorting target of the CYB p24 protein.  相似文献   

8.
Arabidopsis thaliana SNF1‐related‐kinase 1 (SnRK1)‐activating kinase 1 (AtSnAK1) and AtSnAK2 have been shown to phosphorylate in vitro and activate the energy signalling integrator, SnRK1. To clarify this signalling cascade in planta, a genetic‐ and molecular‐based approach was developed. Homozygous single AtSnAK1 and AtSnAK2 T‐DNA insertional mutants did not display an apparent phenotype. Crossing of the single mutants did not allow the isolation of double‐mutant plants, whereas self‐pollinating the S1?/? S2+/? sesquimutant specifically gave approximatively 22% individuals in their offspring that, when rescued on sugar‐supplemented media in vitro, were shown to be AtSnAK1 AtSnAK2 double mutants. Interestingly, this was not obtained in the case of the other sesquimutant, S1+/? S2?/?. Although reduced in size, the double mutant had the capacity to produce flowers, but not seeds. Immunological characterization established the T‐loop of the SnRK1 catalytic subunit to be non‐phosphorylated in the absence of both SnAKs. When the double mutant was complemented with a DNA construct containing an AtSnAK2 open reading frame driven by its own promoter, a normal phenotype was restored. Therefore, wild‐type plant growth and development is dependent on the presence of SnAK in vivo, and this is correlated with SnRK1 phosphorylation. These data show that both SnAKs are kinases phosphorylating SnRK1, and thereby they contribute to energy signalling in planta.  相似文献   

9.
10.
The pathogenic bacterium Legionella pneumophila replicates in host cells within a distinct ER‐associated compartment termed the Legionella‐containing vacuole (LCV). How the dynamic ER network contributes to pathogen proliferation within the nascent LCV remains elusive. A proteomic analysis of purified LCVs identified the ER tubule‐resident large GTPase atlastin3 (Atl3, yeast Sey1p) and the reticulon protein Rtn4 as conserved LCV host components. Here, we report that Sey1/Atl3 and Rtn4 localize to early LCVs and are critical for pathogen vacuole formation. Sey1 overproduction promotes intracellular growth of L. pneumophila, whereas a catalytically inactive, dominant‐negative GTPase mutant protein, or Atl3 depletion, restricts pathogen replication and impairs LCV maturation. Sey1 is not required for initial recruitment of ER to PtdIns(4)P‐positive LCVs but for subsequent pathogen vacuole expansion. GTP (but not GDP) catalyzes the Sey1‐dependent aggregation of purified, ER‐positive LCVs in vitro. Thus, Sey1/Atl3‐dependent ER remodeling contributes to LCV maturation and intracellular replication of L. pneumophila.  相似文献   

11.
Protein bodies (PBs) are endoplasmic reticulum (ER) derived organelles originally found in seeds whose function is to accumulate seed storage proteins. It has been shown that PB formation is not limited to seeds and green fluorescent protein (GFP) fused to either elastin‐like polypeptide (ELP) or hydrophobin (HFBI) fusion tags induce the formation of PBs in leaves of N. benthamiana. In this study, we compared the ELP‐ and HFBI‐induced PBs and showed that ELP‐induced PBs are larger than HFBI‐induced PBs. The size of ELP‐ and HFBI‐induced PBs increased over time along with the accumulation levels of their fused protein. Our results show that PB formation is a concentration‐dependent mechanism in which proteins accumulating at levels higher than 0.2% of total soluble protein are capable of inducing PBs in vivo. Our results show that the presence of fusion tags is not necessary for the formation of PBs, but affects the distribution pattern and size of PBs. This was confirmed by PBs induced by fluorescent proteins as well as fungal xylanases. We noticed that in the process of PB formation, secretory and ER‐resident molecules are passively sequestered into the lumen of PBs. We propose to use this property of PBs as a tool to increase the accumulation levels of erythropoietin and human interleukin‐10 by co‐expression with PB‐inducing proteins.  相似文献   

12.
Potato virus Y (PVY) is a major potato (Solanum tuberosum L.) pathogen that causes severe annual crop losses worth billions of dollars worldwide. PVY is transmitted by aphids, and successful control of virus transmission requires the extensive use of environmentally damaging insecticides to reduce vector populations. Rysto, from the wild relative S. stoloniferum, confers extreme resistance (ER) to PVY and related viruses and is a valuable trait that is widely employed in potato resistance breeding programmes. Rysto was previously mapped to a region of potato chromosome XII, but the specific gene has not been identified to date. In this study, we isolated Rysto using resistance gene enrichment sequencing (RenSeq) and PacBio SMRT (Pacific Biosciences single‐molecule real‐time sequencing). Rysto was found to encode a nucleotide‐binding leucine‐rich repeat (NLR) protein with an N‐terminal TIR domain and was sufficient for PVY perception and ER in transgenic potato plants. Rysto‐dependent extreme resistance was temperature‐independent and requires EDS1 and NRG1 proteins. Rysto may prove valuable for creating PVY‐resistant cultivars of potato and other Solanaceae crops.  相似文献   

13.
Endoplasmic reticulum (ER)‐associated degradation (ERAD) is part of the ER protein quality‐control system (ERQC), which is critical for the conformation fidelity of most secretory and membrane proteins in eukaryotic organisms. ERAD is thought to operate in plants with core machineries highly conserved to those in human and yeast; however, little is known about the plant ERAD system. Here we report the characterization of a close homolog of human OTUB1 in Arabidopsis thaliana, designated as AtOTU1. AtOTU1 selectively hydrolyzes several types of ubiquitin chains and these activities depend on its conserved protease domain and/or the unique N‐terminus. The otu1 null mutant is sensitive to high salinity stress, and particularly agents that cause protein misfolding. It turns out that AtOTU1 is required for the processing of known plant ERAD substrates such as barley powdery mildew O (MLO) alleles by virtue of its association with the CDC48 complex through its N‐terminal region. These observations collectively define AtOTU1 as an OTU domain‐containing deubiquitinase involved in Arabidopsis ERAD.  相似文献   

14.
An elaborate quality control system regulates endoplasmic reticulum (ER) homeostasis by ensuring the fidelity of protein synthesis and maturation. In budding yeast, genomic analyses and high‐throughput proteomic studies have identified ER resident proteins that restore homeostasis following local perturbations. Yet, how these folding factors modulate stress has been largely unexplored. In this study, we designed a series of polymerase chain reaction (PCR)‐based modules including codon‐optimized epitopes and fluorescent protein (FP) variants complete with C‐terminal H/KDEL retrieval motifs. These conserved sequences are inherent to most soluble ER resident proteins. To monitor multiple proteins simultaneously, H/KDEL cassettes are available with six different selection markers, providing optimal flexibility for live‐cell imaging and multicolor labeling in vivo. A single pair of PCR primers can be used for the amplification of these 26 modules, enabling numerous combinations of tags and selection markers. The versatility of pCY H/KDEL cassettes was demonstrated by labeling BiP/Kar2p, Pdi1p and Scj1p with all novel tags, thus providing a direct comparison among FP variants. Furthermore, to advance in vitro studies of yeast ER proteins, Strep‐tag II was engineered with a C‐terminal retrieval sequence. Here, an efficient purification strategy was established for BiP under physiological conditions.  相似文献   

15.
16.
The Russian dandelion Taraxacum koksaghyz synthesizes considerable amounts of high‐molecular‐weight rubber in its roots. The characterization of factors that participate in natural rubber biosynthesis is fundamental for the establishment of T. koksaghyz as a rubber crop. The cis‐1,4‐isoprene polymers are stored in rubber particles. Located at the particle surface, the rubber transferase complex, member of the cis‐prenyltransferase (cisPT) enzyme family, catalyzes the elongation of the rubber chains. An active rubber transferase heteromer requires a cisPT subunit (CPT) as well as a CPT‐like subunit (CPTL), of which T. koksaghyz has two homologous forms: TkCPTL1 and TkCPTL2, which potentially associate with the rubber transferase complex. Knockdown of TkCPTL1, which is predominantly expressed in latex, led to abolished poly(cis‐1,4‐isoprene) synthesis but unaffected dolichol content, whereas levels of triterpenes and inulin were elevated in roots. Analyses of latex from these TkCPTL1‐RNAi plants revealed particles that were similar to native rubber particles regarding their particle size, phospholipid composition, and presence of small rubber particle proteins (SRPPs). We found that the particles encapsulated triterpenes in a phospholipid shell stabilized by SRPPs. Conversely, downregulating the low‐expressed TkCPTL2 showed no altered phenotype, suggesting its protein function is redundant in T. koksaghyz. MS‐based comparison of latex proteomes from TkCPTL1‐RNAi plants and T. koksaghyz wild‐types discovered putative factors that convert metabolites in biosynthetic pathways connected to isoprenoids or that synthesize components of the rubber particle shell.  相似文献   

17.
Importin‐α proteins mediate the translocation of nuclear localization signal (NLS)‐containing proteins from the cytoplasm into the nucleus through nuclear pore complexes (NPCs). Genetically, Arabidopsis IMPORTIN‐α3/MOS6 (MODIFIER OF SNC1, 6) is required for basal plant immunity and constitutive disease resistance activated in the autoimmune mutant snc1 (suppressor of npr1‐1, constitutive 1), suggesting that MOS6 plays a role in the nuclear import of proteins involved in plant defense signaling. Here, we sought to identify and characterize defense‐regulatory cargo proteins and interaction partners of MOS6. We conducted both in silico database analyses and affinity purification of functional epitope‐tagged MOS6 from pathogen‐challenged stable transgenic plants coupled with mass spectrometry. We show that among the 13 candidate MOS6 interactors we selected for further functional characterization, the TIR‐NBS‐type protein TN13 is required for resistance against Pseudomonas syringae pv. tomato (Pst) DC3000 lacking the type‐III effector proteins AvrPto and AvrPtoB. When expressed transiently in N. benthamiana leaves, TN13 co‐immunoprecipitates with MOS6, but not with its closest homolog IMPORTIN‐α6, and localizes to the endoplasmic reticulum (ER), consistent with a predicted N‐terminal transmembrane domain in TN13. Our work uncovered the truncated NLR protein TN13 as a component of plant innate immunity that selectively binds to MOS6/IMPORTIN‐α3 in planta. We speculate that the release of TN13 from the ER membrane in response to pathogen stimulus, and its subsequent nuclear translocation, is important for plant defense signal transduction.  相似文献   

18.
In both yeast and mammals, the topoisomerase poison camptothecin (CPT) induces fork reversal, which has been proposed to stabilize replication forks, thus providing time for the repair of CPT‐induced lesions and supporting replication restart. We show that Tel1, the Saccharomyces cerevisiae orthologue of human ATM kinase, stabilizes CPT‐induced reversed forks by counteracting their nucleolytic degradation by the MRX complex. Tel1‐lacking cells are hypersensitive to CPT specifically and show less reversed forks in the presence of CPT. The lack of Mre11 nuclease activity restores wild‐type levels of reversed forks in CPT‐treated tel1Δ cells without affecting fork reversal in wild‐type cells. Moreover, Mrc1 inactivation prevents fork reversal in wild‐type, tel1Δ, and mre11 nuclease‐deficient cells and relieves the hypersensitivity of tel1Δ cells to CPT. Altogether, our data indicate that Tel1 counteracts Mre11 nucleolytic activity at replication forks that undergo Mrc1‐mediated reversal in the presence of CPT.  相似文献   

19.
The cellular proteostasis network integrates the protein folding and clearance machineries in multiple sub‐cellular compartments of the eukaryotic cell. The endoplasmic reticulum (ER) is the site of synthesis and folding of membrane and secretory proteins. A distinctive feature of the ER is its tightly controlled redox homeostasis necessary for the formation of inter‐ and intra‐molecular disulphide bonds. Employing genetically encoded in vivo sensors reporting on the redox state in an organelle‐specific manner, we show in the nematode Caenorhabditis elegans that the redox state of the ER is subject to profound changes during worm lifetime. In young animals, the ER is oxidizing and this shifts towards reducing conditions during ageing, whereas in the cytosol the redox state becomes more oxidizing with age. Likewise, the redox state in the cytosol and the ER change in an opposing manner in response to proteotoxic challenges in C. elegans and in HeLa cells revealing conservation of redox homeostasis. Moreover, we show that organelle redox homeostasis is regulated across tissues within C. elegans providing a new measure for organismal fitness.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号