首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agrobacterium genetically transforms plants by transferring and integrating T‐(transferred) DNA into the host genome. This process requires both Agrobacterium and host proteins. VirE2 interacting protein 1 (VIP1), an Arabidopsis bZIP protein, has been suggested to mediate transformation through interaction with and targeting of VirE2 to nuclei. We examined the susceptibility of Arabidopsis vip1 mutant and VIP1 overexpressing plants to transformation by numerous Agrobacterium strains. In no instance could we detect altered transformation susceptibility. We also used confocal microscopy to examine the subcellular localization of Venus‐tagged VirE2 or Venus‐tagged VIP1, in the presence or absence of the other untagged protein, in different plant cell systems. We found that VIP1–Venus localized in both the cytoplasm and the nucleus of Arabidopsis roots, agroinfiltrated Nicotiana benthamiana leaves, Arabidopsis mesophyll protoplasts and tobacco BY‐2 protoplasts, regardless of whether VirE2 was co‐expressed. VirE2 localized exclusively to the cytoplasm of tobacco and Arabidopsis protoplasts, whether in the absence or presence of VIP1 overexpression. In transgenic Arabidopsis plants and agroinfiltrated N. benthamina leaves we could occasionally detect small aggregates of the Venus signal in nuclei, but these were likely to be imagining artifacts. The vast majority of VirE2 remained in the cytoplasm. We conclude that VIP1 is not important for Agrobacterium‐mediated transformation or VirE2 subcellular localization.  相似文献   

2.
3.
Agrobacterium tumefaciens is a natural genetic engineer widely used to deliver DNA into various recipients, including plant, yeast and fungal cells. The bacterium can transfer single‐stranded DNA molecules (T–DNAs) and bacterial virulence proteins, including VirE2. However, neither the DNA nor the protein molecules have ever been directly visualized after the delivery. In this report, we adopted a split‐GFP approach: the small GFP fragment (GFP11) was inserted into VirE2 at a permissive site to create the VirE2‐GFP11 fusion, which was expressed in A. tumefaciens; and the large fragment (GFP1–10) was expressed in recipient cells. Upon delivery of VirE2‐GFP11 into the recipient cells, GFP fluorescence signals were visualized. VirE2‐GFP11 was functional like VirE2; the GFP fusion movement could indicate the trafficking of Agrobacterium‐delivered VirE2. As the natural host, all plant cells seen under a microscope received the VirE2 protein in a leaf‐infiltration assay; most of VirE2 moved at a speed of 1.3–3.1 μm sec?1 in a nearly linear direction, suggesting an active trafficking process. Inside plant cells, VirE2‐GFP formed filamentous structures of different lengths, even in the absence of T‐DNA. As a non‐natural host recipient, 51% of yeast cells received VirE2, which did not move inside yeast. All plant cells seen under a microscope transiently expressed the Agrobacterium‐delivered transgene, but only 0.2% yeast cells expressed the transgene. This indicates that Agrobacterium is a more efficient vector for protein delivery than T‐DNA transformation for a non‐natural host recipient: VirE2 trafficking is a limiting factor for the genetic transformation of a non‐natural host recipient. The split‐GFP approach could enable the real‐time visualization of VirE2 trafficking inside recipient cells.  相似文献   

4.
Bacteria of the genus Agrobacterium are capable of transferring a fragment of their Ti-plasmid T-DNA, in a complex with the proteins VirE2 and VirD2, into the nuclei of plant cells and incorporating it into the chromosome of the host. The mechanisms of T-DNA transportation through the membrane and cytoplasm of the plant cell are unknown. The aim of this work was isolation of the virulence protein VirE2 for studying its role in T-DNA transportation through the membrane and cytoplasm of eukaryotic cells. For VirE2 accumulation, the virE2 gene was cloned into plasmid pQE31. VirE2 was isolated from the cells of E. coli strain XL1-blue, containing the recombinant plasmid pQE31-virE2. The cells were disrupted ultrasonically, and the protein, with six histidine residues at the N-end, was isolated by means of affinity chromatography on a Ni-NTA-superose column. The purified protein was tested by the immunodot method using polyclonal rabbit antibodies and anti-VirE2 miniantibodies. The ability of the recombinant protein VirE2 to bind to single-stranded DNA was judged from the formation of complexes detected by electrophoresis in agarose gel. Thus, we isolated, purified, and partially characterized the Agrobacterium tumefaciens virulence protein VirE2, which is capable of binding to single-stranded T-DNA upon transfer to the plant cell.Translated from Mikrobiologiya, Vol. 74, No. 1, 2005, pp. 92–98.Original Russian Text Copyright © 2005 by Volokhina, Sazonova, Velikov, Chumakov.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
Diverse pathogens secrete effector proteins into plant cells to manipulate host cellular processes. Oomycete pathogens contain large complements of predicted effector genes defined by an RXLR host cell entry motif. The genome of Hyaloperonospora arabidopsidis (Hpa, downy mildew of Arabidopsis) contains at least 134 candidate RXLR effector genes. Only a small subset of these genes is conserved in related oomycetes from the Phytophthora genus. Here, we describe a comparative functional characterization of the Hpa RXLR effector gene HaRxL96 and a homologous gene, PsAvh163, from the Glycine max (soybean) pathogen Phytophthora sojae. HaRxL96 and PsAvh163 are induced during the early stages of infection and carry a functional RXLR motif that is sufficient for protein uptake into plant cells. Both effectors can suppress immune responses in soybean. HaRxL96 suppresses immunity in Nicotiana benthamiana, whereas PsAvh163 induces an HR‐like cell death response in Nicotiana that is dependent on RAR1 and Hsp90.1. Transgenic Arabidopsis plants expressing HaRxL96 or PsAvh163 exhibit elevated susceptibility to virulent and avirulent Hpa, as well as decreased callose deposition in response to non‐pathogenic Pseudomonas syringae. Both effectors interfere with defense marker gene induction, but do not affect salicylic acid biosynthesis. Together, these experiments demonstrate that evolutionarily conserved effectors from different oomycete species can suppress immunity in plant species that are divergent from the source pathogen’s host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号