首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
3.
4.
5.
An acid fraction of the dichloromethane extract of Grindelia squarrosa and a neutral fraction of the ethyl acetate extract of Grindelia camporum yielded a number of previously known grindelane diterpenoids and flavonoids. Along with the known isolates, two new grindelane diterpenoids, 13-isogrindelic acid and 17-grindeloxy grindelic acid, from G. squarrosa were isolated and identified spectroscopically.  相似文献   

6.
2‐C‐Methyl‐d ‐erythritol‐2,4‐cyclodiphosphate (MEcDP) is an intermediate of the plastid‐localized 2‐C‐methyl‐d ‐erythritol‐4‐phosphate (MEP) pathway which supplies isoprenoid precursors for photosynthetic pigments, redox co‐factor side chains, plant volatiles, and phytohormones. The Arabidopsis hds‐3 mutant, defective in the 1‐hydroxy‐2‐methyl‐2‐(E)‐butenyl‐4‐diphosphate synthase step of the MEP pathway, accumulates its substrate MEcDP as well as the free tetraol 2‐C‐methyl‐d ‐erythritol (ME) and glucosylated ME metabolites, a metabolic diversion also occurring in wild type plants. MEcDP dephosphorylation to the free tetraol precedes glucosylation, a process which likely takes place in the cytosol. Other MEP pathway intermediates were not affected in hds‐3. Isotopic labeling, dark treatment, and inhibitor studies indicate that a second pool of MEcDP metabolically isolated from the main pathway is the source of a signal which activates salicylic acid induced defense responses before its conversion to hemiterpene glycosides. The hds‐3 mutant also showed enhanced resistance to the phloem‐feeding aphid Brevicoryne brassicae due to its constitutively activated defense response. However, this MEcDP‐mediated defense response is developmentally dependent and is repressed in emerging seedlings. MEcDP and ME exogenously applied to adult leaves mimics many of the gene induction effects seen in the hds‐3 mutant. In conclusion, we have identified a metabolic shunt from the central MEP pathway that diverts MEcDP to hemiterpene glycosides via ME, a process linked to balancing plant responses to biotic stress.  相似文献   

7.
The new methylated grindelane diterpenoid, 7β ‐hydroxy‐8(17)‐dehydrogrindelic acid ( 1b ), together with the known 7α ‐hydroxy‐8(17)‐dehydrogrindelic acid ( 2a ), 6‐oxogrindelic acid ( 3a ), 4β ‐hydroxy‐6‐oxo‐19‐norgrindelic ( 4a ), 19‐hydroxygrindelic acid ( 5a ), 18‐hydroxygrindelic acid ( 6a ), 4α ‐carboxygrindelic acid ( 7a ), 17‐hydroxygrindelic acid ( 8a ), 6α ‐hydroxygrindelic acid ( 9a ), 8,17‐bisnor‐8‐oxagrindelic acid ( 10a ), 7α ,8α ‐epoxygrindelic acid ( 11a ), and strictanonic acid ( 12a ) as methyl esters were obtained from an Argentine collection of Grindelia chiloensis (Cornel .) Cabrera . Their structures and relative configurations were established on the basis of spectroscopic analysis. CHC l3 extract from the aerial parts and their pure compounds were evaluated for their antifungal and depigmenting effects. Methyl ester derivative of 10a ( 10b ) exhibited a remarkable mycelial growth inhibition against Botritis cinerea with an IC 50 of 13.5 μg ml?1. While the new grindelane 1b exerted a clear color reduction of the yellow‐orange pigment developed by Fusarium oxysporum against UV ‐induced damage.  相似文献   

8.
Selaginella moellendorffii miltiradiene synthase (SmMDS) is a unique bifunctional diterpene synthase (diTPS) that catalyses the successive cyclization of (E,E,E)-geranylgeranyl diphosphate (GGPP) via (+)-copalyl diphosphate (CPP) to miltiradiene, which is a crucial precursor of important medicinal compounds, such as triptolide, ecabet sodium and carnosol. Miltiradiene synthetic processes have been studied in monofunctional diTPSs, while the precise mechanism by which active site amino acids determine product simplicity and the experimental evidence for reaction intermediates remain elusive. In addition, how bifunctional diTPSs work compared to monofunctional enzymes is attractive for detailed research. Here, by mutagenesis studies of SmMDS, we confirmed that pimar-15-en-8-yl+ is an intermediate in miltiradiene synthesis. Moreover, we determined the apo-state and the GGPP-bound state crystal structures of SmMDS. By structure analysis and mutagenesis experiments, possible contributions of key residues both in class I and II active sites were suggested. Based on the structural and functional analyses, we confirmed the copal-15-yl+ intermediate and unveiled more details of the catalysis process in the SmMDS class I active site. Moreover, the structural and experimental results suggest an internal channel for (+)-CPP produced in the class II active site moving towards the class I active site. Our research is a good example for intermediate identification of diTPSs and provides new insights into the product specificity determinants and intermediate transport, which should greatly facilitate the precise controlled synthesis of various diterpenes.  相似文献   

9.
The medicinal plant Camptotheca acuminata accumulates camptothecin, 10‐hydroxycamptothecin, and 10‐methoxycamptothecin as its major bioactive monoterpene indole alkaloids. Here, we describe identification and functional characterization of 10‐hydroxycamptothecin O‐methyltransferase (Ca10OMT), a member of the Diverse subclade of class II OMTs. Ca10OMT is highly active toward both its alkaloid substrate and a wide range of flavonoids in vitro and in this way contrasts with other alkaloid OMTs in the subclade that only utilize alkaloid substrates. Ca10OMT shows a strong preference for the A‐ring 7‐OH of flavonoids, which is structurally equivalent to the 10‐OH of 10‐hydroxycamptothecin. The substrates of other alkaloid OMTs in the subclade bear little similarity to flavonoids, but the 3‐D positioning of the 7‐OH, A‐ and C‐rings of flavonoids is nearly identical to the 10‐OH, A‐ and B‐rings of 10‐hydroxycamptothecin. This structural similarity likely explains the retention of flavonoid OMT activity by Ca10OMT and also why kaempferol and quercetin aglycones are potent inhibitors of its 10‐hydroxycamptothecin activity. The catalytic promiscuity and strong inhibition of Ca10OMT by flavonoid aglycones in vitro prompted us to investigate the potential physiological roles of the enzyme in vivo. Based on its regioselectivity, kinetic parameters and absence of 7‐OMT flavonoids in vivo, we conclude that the major and likely only substrate of Ca10OMTin vivo is 10‐hydroxycamptothecin. This is likely accomplished by Ca10OMT being kept spatially separated at the tissue levels from potentially inhibitory flavonoid aglycones, and flavonoid aglycones being rapidly glycosylated to non‐inhibitory flavonoid glycosides.  相似文献   

10.
We previously reported l ‐α‐aminooxy‐phenylpropionic acid (AOPP) to be an inhibitor of auxin biosynthesis, but its precise molecular target was not identified. In this study we found that AOPP targets TRYPTOPHAN AMINOTRANSFERASE of ARABIDOPSIS 1 (TAA1). We then synthesized 14 novel compounds derived from AOPP to study the structure–activity relationships of TAA1 inhibitors in vitro. The aminooxy and carboxy groups of the compounds were essential for inhibition of TAA1 in vitro. Docking simulation analysis revealed that the inhibitory activity of the compounds was correlated with their binding energy with TAA1. These active compounds reduced the endogenous indole‐3‐acetic acid (IAA) content upon application to Arabidopsis seedlings. Among the compounds, we selected 2‐(aminooxy)‐3‐(naphthalen‐2‐yl)propanoic acid (KOK1169/AONP) and analyzed its activities in vitro and in vivo. Arabidopsis seedlings treated with KOK1169 showed typical auxin‐deficient phenotypes, which were reversed by exogenous IAA. In vitro and in vivo experiments indicated that KOK1169 is more specific for TAA1 than other enzymes, such as phenylalanine ammonia‐lyase. We further tested 41 novel compounds with aminooxy and carboxy groups to which we added protection groups to increase their calculated hydrophobicity. Most of these compounds decreased the endogenous auxin level to a greater degree than the original compounds, and resulted in a maximum reduction of about 90% in the endogenous IAA level in Arabidopsis seedlings. We conclude that the newly developed compounds constitute a class of inhibitors of TAA1. We designated them ‘pyruvamine’.  相似文献   

11.
Three new 4,5‐seco‐20(10→5)‐abeo‐abietane diterpenoids, 16‐hydroxysalvilenone ( 1 ), 15‐hydroxysalprionin ( 2 ), and 11β,15‐dihydroxysalprionin‐12‐one ( 3 ), and nine known abietane diterpenoids, 4 – 12 , along with one known sempervirane diterpenoid, hispidanol A ( 13 ), were isolated from the aerial parts of Isodon lophanthoides var. graciliflorus. The structures of compounds 1 – 3 were determined on the basis of spectroscopic methods including extensive analysis of NMR and mass spectroscopic data. All diterpenoids were tested for their TNF‐α inhibitory effects on LPS‐induced RAW264.7 cells. Compound 9 (16‐acetoxyhorminone) was the most potent with an IC50 value of 3.97±0.70 μm .  相似文献   

12.
Isoprenyl diphosphate synthases (IDSs) catalyze some of the most basic steps in terpene biosynthesis by producing the prenyl diphosphate precursors of each of the various terpenoid classes. Most plants investigated have distinct enzymes that produce the short‐chain all‐trans (E) prenyl diphosphates geranyl diphosphate (GDP, C10), farnesyl diphosphate (FDP, C15) or geranylgeranyl diphosphate (GGDP, C20). In the genome of Arabidopsis thaliana, 15 trans‐product‐forming IDSs are present. Ten of these have recently been shown to produce GGDP by genetic complementation of a carotenoid pathway engineered into Escherichia coli. When verifying the product pattern of IDSs producing GGDP by a new LC‐MS/MS procedure, we found that five of these IDSs produce geranylfarnesyl diphosphate (GFDP, C25) instead of GGDP as their major product in enzyme assays performed in vitro. Over‐expression of one of the GFDP synthases in A. thaliana confirmed the production of GFDP in vivo. Enzyme assays with A. thaliana protein extracts from roots but not other organs showed formation of GFDP. Furthermore, GFDP itself was detected in root extracts. Subcellular localization studies in leaves indicated that four of the GFDP synthases were targeted to the plastoglobules of the chloroplast and one was targeted to the mitochondria. Sequence comparison and mutational studies showed that the size of the R group of the 5th amino acid residue N‐terminal to the first aspartate‐rich motif is responsible for C25 versus C20 product formation, with smaller R groups (Ala and Ser) resulting in GGDP (C20) as a product and a larger R group (Met) resulting in GFDP (C25).  相似文献   

13.
This study assessed variability in the length and age compositions, longevity, length‐at‐age and rates of growth and mortality of the east Australian stout whiting Sillago robusta Stead, 1908 population harvested by demersal trawl fisheries. Sampling was done over 2 years and was spatially stratified across three depth strata between 11 and 90 m at two locations approximately 400 km apart. There were no consistent depth‐related differences in length and age compositions, but the mean and median length and age of the population was greater at the lower latitude location. Age classes 2 and 3 years dominated samples in the north, and 1 and 2 years in the south. Observed longevity was 10 years in the north, and 6 years in the south. Mean length‐at‐age was not consistently different between sexes, years or locations, nor did the von Bertalanffy growth function differ significantly between sexes, even though females had a greater estimated L (23.45 cm FL) compared to males (22.36 cm FL). Estimated natural mortality (M) ranged between 0.42 and 0.77, using age‐ and length‐based methods. Age‐based catch‐curve analyses identified the instantaneous rate of total mortality (Z) to range between 1.48 and 2.70, with subsequent estimates of fishing mortality (F) ranging between 1.15 and 2.00, being greater than M. Exploitation rates (E) were greater than 0.7, indicating that S. robusta at the study locations was heavily fished. The data provided here can be used as a basis to evaluate future fishery‐ and climate‐related changes in the population demographics of east Australian S. robusta.  相似文献   

14.
Conifer diterpene synthases (diTPSs) catalyze the multi-step cycloisomerization of geranylgeranyl diphosphate, or copalyl diphosphate, to a variety of diterpenes in general (i.e., primary) and specialized (i.e., secondary) metabolism. Despite their functional diversity, the known conifer diTPSs are structurally closely related, with variations in three conserved domains, α, β and γ. The catalytic specificity of conifer class I and class I/II diTPSs is predominantly determined by the protein environment of the C-terminal class I active site through stabilization of common and unique carbocation intermediates. Using the crystal structure of Taxus brevifolia taxadiene synthase as template, comparative modeling and mutagenesis of the class I diTPS ent-kaurene synthase from Picea glauca (PgKS) was performed to elucidate the catalytic specificity of PgKS relative to spruce diTPSs of specialized metabolism. N-terminal truncations demonstrated a role for the βγ domain in class I enzyme activity for PgKS, facilitating the closure of the class I active site upon substrate binding. Based on position, Arg476 and Asp736 in the C-terminal α domain of PgKS may contribute to this conformational transition and appear critical for catalysis. Consistent with the mechanism of other diTPSs, the subsequent ionization of a copalyl diphosphate substrate and coordination of the diphosphate group is controlled by strictly conserved residues in the DDxxD and NDIQGCKRE motif of PgKS, such as Asn656 and Arg653. Furthermore, Lys478, Trp502, Met588, Ala615 and Ile619 control the enzymatic activity and specificity of PgKS via carbocation stabilization en route to ent-kaurene. These positions show a high level of amino acid variation, consistent with functional plasticity among conifer diTPSs of different functions in general or specialized metabolism.  相似文献   

15.
In this study, we investigated how miR‐10b‐3p regulated the proliferation, migration, invasion in hepatocellular carcinoma (HCC) at both in vitro and in vivo levels. CMTM5 was among the differentially expressed genes (data from TCGA). The expression of miR‐10b‐3p and CMTM5 was detected by qRT‐PCR and Western blot (WB). TargetScan was used to acquire the binding sites. Dual‐luciferase reporter gene assay was used to verify the direct target relationship between miR‐10b‐3p and CMTM5. WB analysis proved that miR‐10b‐3p suppressed CMTM5 expression. Furthermore, proliferation, invasion and migration of HCC cells were measured by MTT assay, colony formation assay, transwell assay and wound‐healing assay, respectively. Kaplan‐Meier plotter valued the overall survival of CMTM5. Finally, xenograft assay was also conducted to verify the effects of miR‐10b‐3p/CMTM5 axis in vivo. Up‐regulation of miR‐10b‐3p and down‐regulation of CMTM5 were detected in HCC tissues and cell lines. CMTM5 was verified as a target gene of miR‐10b‐3p. The overexpression of CMTM5 contributed to the suppression of the proliferative, migratory and invasive abilities of HCC cells. Moreover, the up‐regulation of miR‐10b‐3p and down‐regulation of CMTM5 were observed to be associated with worse overall survival. Lastly, we have confirmed the carcinogenesis‐related roles of miR‐10b‐3p and CMTM5 in vivo. We concluded that the up‐regulation of miR‐10b‐3p promoted the progression of HCC cells via targeting CMTM5.  相似文献   

16.
Volatile organic compounds (VOCs) mediate communication between plants and insects. Plants under insect herbivore attack release VOCs either at the site of attack or systemically, indicating within‐plant communication. Some of these VOCs, which may be induced only upon herbivore attack, recruit parasitoids and predatory insects to feed on the attacking insects. Moreover, some plants are able to ‘eavesdrop’ on herbivore‐induced plant volatiles (HIPVs) to prime themselves against impending attack; such eavesdropping exemplifies plant–plant communication. In apple orchards, the beetle Melolontha melolontha L. (Coleoptera: Scarabaeidae) is an important insect pest whose larvae live and feed on roots for about 4 years. In this study, we investigated whether the feeding activity of M. melolontha larvae (1) alters the volatile profile of apple roots, (2) induces the release of HIPVs systemically in the leaves, and (3) whether infested plants communicate to neighbouring non‐infested conspecifics through HIPVs. To answer these questions, we collected constitutive VOCs from intact M9 roots as well as M. melolontha larvae‐damaged roots using a newly designed ‘rhizobox’, to collect root‐released volatiles in situ, without damaging the plant root system. We also collected VOCs from the leaf‐bearing shoots of M9 whose roots were under attack by M. melolontha larvae and from shoots of neighbouring non‐infested conspecifics. Gas chromatography‐mass spectrometry analysis showed that feeding activity of M. melolontha larvae induces the release of specific HIPVs; for instance, camphor was found in the roots only after larvae caused root damage. Melolontha melolontha also induced the systemic release of methyl salicylate and (E,E)‐α‐farnesene from the leaf‐bearing shoots. Methyl salicylate and (E,E)‐α‐farnesene were also released by the shoots of non‐infested neighbouring conspecifics. These phenomena indicate the induction of specific VOCs below‐ and above‐ground upon M. melolontha larvae feeding on apple roots as well as plant–plant communication in apple plants.  相似文献   

17.
Plants release volatiles in response to caterpillar feeding that attracts natural enemies of the herbivores, a tritrophic interaction which has been considered to be an indirect plant defence against herbivores. On the other hand, the caterpillar‐induced plant volatiles have been reported to either repel or attract conspecific adult herbivores. This work was undertaken to investigate the response of both herbivores and natural enemies to caterpillar‐induced plant volatiles in apple orchards. We sampled volatile compounds emitted from uninfested apple trees, and apple trees infested with generalist herbivore the pandemis leafroller moth, Pandemis pyrusana (Lepidoptera, Tortricidae) larvae using headspace collection and analysed by gas chromatography/mass spectrometry. Infested apple trees uniquely release six compounds (benzyl alcohol, phenylacetonitrile, phenylacetaldehyde, 2‐phenylethanol, indole and (E)‐nerolidol). These compounds were tested on two species of herbivores and one predator in apple orchards. Binary blends of phenylacetonitrile + acetic acid or 2‐phenylethanol + acetic acid attracted a large number of conspecific male and female adult herbivores. The response of pandemis leafroller to herbivore‐induced plant volatiles (HIPVs) was so pronounced that over one thousand and seven hundred conspecific male and female adult herbivores were caught in traps baited with HIPVs in three‐day trapping period. In addition, significantly higher number of male and female obliquebanded leafroller, Choristoneura rosaceana (Lepidoptera, Tortricidae), was caught in traps baited a binary blend of 2‐phenylethanol + acetic acid, or a ternary blend contains 2‐phenylethanol and phenylacetonitrile + acetic acid. This result challenges the current paradigm hypothesized that HIPVs repel herbivores and question the indirect defensive function proposed for these compounds. On the other hand, a ternary blend of phenylacetonitrile and 2‐phenylethanol + acetic acid attracted the largest numbers of the general predator, the common green lacewing, Chrysoperla plorabunda. To our knowledge, this is the first record of the direct attraction of conspecific adult herbivores as well as a predator to the caterpillar‐induced plant volatiles in the field.  相似文献   

18.
Plant–pollinator interactions are critical to ecosystems. However, when artificial nectar feeders are available in an area, they could draw pollinators away from plants. We tested the effects of artificial nectar feeders in an Ecuadorian cloud forest on four aspects of bat–plant interactions: (1) bat relative abundance; (2) bat pollen loads; (3) flower visitation rates, and (4) breeding success of a bat‐pollinated species (Burmeistera glabrata). We divided the study site into areas close to (~30 m) and far from (~500 m) three different feeder sites. At each distance, we captured nectar bats (Anoura caudifer, Anoura cultrata, and Lonchophylla robusta) to estimate their relative abundance and to collect pollen from fur and fecal samples. We also videotaped flowers to estimate bat visitation rates and recorded different breeding success variables of B. glabrata. We found that areas close to feeders have higher relative bat abundance by a factor of 40. In spite of this, the presence of feeders did not affect bat pollen loads, nor the flower visitation rates and breeding success of B. glabrata. Interestingly, there were differences in pollen loads between the three bat species, in that L. robusta individuals rarely carried pollen and were only captured near feeders.  相似文献   

19.
Pinecones from Pinus koraiensisSiebold & Zucc . (Pinaceae), which have historically been treated as an undesired waste by‐product in the processing of seeds, have recently been shown to contain ingredients with potent biological activities, such as polyphenols exhibiting antitumor activity. With this study, we seek to broaden our understanding of antitumor compounds contained in these pinecones beyond just polyphenols. We found that the water extract of P. koraiensis pinecones exhibits significant cytotoxic activity, with IC50 values ranging from 0.62 to 1.73 mg/ml in four human lung cancer cell lines, A549, H1264, H1299, and Calu‐6, irrespective of their p53 status. We also demonstrate that pinecone water extract induces apoptosis associated with caspase‐3 activation in the same cancer cell lines. Chemical investigation of the pinecone water extract revealed eight main components ( 1  –  8 ), and their structures were identified as dehydroabietic acid ( 1 ), 15‐hydroxy‐7‐oxodehydroabietic acid ( 2 ), 7β,15‐dihydroxydehydroabietic acid ( 3 ), β‐d ‐glucopyranosyl labda‐8(17,13)‐diene‐(15,16)‐lactone‐19‐oate ( 4 ), 7α,15‐dihydroxydehydroabietic acid ( 5 ), (+)‐(1S,2S,4R)‐limonene‐1,2‐diol ( 6 ), sobrerol ( 7 ), and 4‐hydroxybenzoic acid ( 8 ). These findings suggest a novel biological application of P. koraiensis pinecones in combatting human lung cancer, and further identify the major compounds that could contribute to this anticancer activity.  相似文献   

20.
Centaurea ragusina L., an endemic Croatian plant species, revealed a good cytotoxic activity of aqueous extracts (AE) on human bladder (T24) and human glioblastoma (A1235) cancer cell lines. The chemical constituents were tentatively identified using high performance liquid chromatography HPLC‐DAD/ESI‐TOF‐MS in negative ionization mode. The main compounds of herba extract were sesquiterpene lactones: solstitialin A 3,13‐diacetate and epoxyrepdiolide; organic acid: quinic acid. The main compounds of flower extract were organic acids: quinic acid, citric acid, and malic acid; sesquiterpene lactone: cynaropicrin; phenolic compounds: chlorogenic acid and phenylpropanoid: syringin. The AE of Cragusina were investigated for correlation of their effects on human bladder (T24) and human glioblastoma (A1235) cancer cell lines using the MTT assay. Although both extracts showed significant dose‐ and time‐dependent cytotoxic activity against both cancer cell lines, the flower extract exhibited slightly higher activity. In order to determine type of cell death induced by treatment, cell lines were exposed subsequently to a treatment with both flower and herba AE. The majority of the cells died by induced apoptosis treatment. Flower AE (26.25%), compared to a leaf AE (22.15%) showed slightly higher percentage of an apoptosis in T24 cells, when compared to a non‐treated cells (0.04%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号